The transit method requires watching the light output of a star over long periods of time. A transit occurs when the planet crosses in front of its star from earths point of view. Since there is a small object (the planet) now blocking some of the star, it appears to dim a little bit for a while until the planet passes. If we are in a position where that occurs regularly (most paths of planets do not happen to be on the line of sight between earth and their star) we can deduce the period of orbit. From the amount of dimming and the period you can estimate the mass
Va ser 0.0900 yo creo preo que esta respuesta te ayude
We can solve the problem by using Ohm's law, which states that an Ohmic conductor the following relationship holds:

where

is the potential difference applied to the resistor
I is the current flowing through it
R is the resistance
In our problem, I=4.00 A and

, so the potential difference is
Answer:
Maximum altitude above the ground = 1,540,224 m = 1540.2 km
Explanation:
Using the equations of motion
u = initial velocity of the projectile = 5.5 km/s = 5500 m/s
v = final velocity of the projectile at maximum height reached = 0 m/s
g = acceleration due to gravity = (GM/R²) (from the gravitational law)
g = (6.674 × 10⁻¹¹ × 5.97 × 10²⁴)/(6370000²)
g = -9.82 m/s² (minus because of the direction in which it is directed)
y = vertical distance covered by the projectile = ?
v² = u² + 2gy
0² = 5500² + 2(-9.82)(y)
19.64y = 5500²
y = 1,540,224 m = 1540.2 km
Hope this Helps!!!
Efficiency = Work Output / Work Input
92% = Work Output / 100
0.92 = Work Output / 100
Work Output = 0.92 * 100
Work Output = 92 joules.