1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Rudik [331]
3 years ago
9

A 2 kg block is on a horizontal surface. A horizontal force is applied by a person to the block to pull it on the surface with a

n acceleration of 2 m/s. The coefficient of kinetic friction between the box and the surface is 0.3. How much work is done in joules by the person on the block if the block is pulled 50 m? a) 200 joules b) 250 joules c) O joules d) 300 joules e) 500 joules
Physics
1 answer:
Agata [3.3K]3 years ago
3 0

Answer:

work done = 500 J

option e is correct

Explanation:

given data

mass = 2 kg

acceleration = 2 m/s

coefficient of kinetic friction = 0.3

block D = 50 m

to find out

work

solution

we know that work done is

work done = f × d    ...........1

here f is force and d is block i.e 50 m

so here

force , f - k mg  =ma

f = 2 ( 2 + 0.3 ×10 )

f = 10 N

so from equation 1

work done =  f × d

work done = 10 × 50

work done = 500 J

option e is correct

You might be interested in
A person pushes horizontally with a force of 220. N on a 61.0 kg crate to move it across a level floor. The coefficient of kinet
Ede4ka [16]

Answer:

(a) 161.57 N

(b) 0.958 m/s^2

Explanation:

Force applied, F = 220 N

mass of crate, m = 61 kg

μ = 0.27

(a) The magnitude of the frictional force,

f = μ N

where, N is the normal reaction

N = m x g = 61 x 9.81 = 598.41 N

So, the frictional force, f = 0.27 x 598.41

f = 161.57 N

(b) Let a be the acceleration of the crate.

Fnet = F - f = 220 - 161.57

Fnet = 58.43 N

According to newton's second law

Fnet = mass x acceleration

58.43 = 61 x a

a = 0.958 m/s^2

Thus, the acceleration of the crate is 0.958 m/s^2.  

7 0
3 years ago
A man standing on a bus remains still when the bus is at rest. When the bus moves forward and then
Hoochie [10]
This is an example of inertia - the body keeps it's energy because there is no force applied to it. When we try to stop it's motion, it resists. A man is not rigidly attached to the bus, so he keeps moving forward, at least until he hits the front window from inside. Answer is D.
6 0
3 years ago
4.77 Augment the rectifier circuit of Problem 4.70 with a capacitor chosen to provide a peak-to-peak ripple voltage of (i) 10% o
goblinko [34]

The question incomplete! The complete question along with answer and explanation is provided below.

Question:

Augment the rectifier circuit of Problem 4.68 with a  capacitor chosen to provide a peak-to-peak ripple voltage of  (i) 10% of the peak output and (ii) 1% of the peak output. In  each case:

(a) What average output voltage results?

(b) What fraction of the cycle does the diode conduct?

(c) What is the average diode current?

(d) What is the peak diode current?

Problem 4.68:

A half-wave rectifier circuit with a 1-kΩ load operates from a 120-V (rms) 60-Hz household supply through  a 10-to-1 step-down transformer. It uses a silicon diode  that can be modeled to have a 0.7-V drop for any current.

Given Information:

Input voltage = 120 Vrms

10 to 1 step-down transformer

Voltage drop at diode = 0.7 V

Load resistance = R = 1 kΩ

Required Information:

 (i) 10% of the peak output and (ii) 1% of the peak output. In  each case:

(a) What average output voltage results?

(b) What fraction of the cycle does the diode conduct?

(c) What is the average diode current?

(d) What is the peak diode current?

Answer:

Case (i)

Vavg = 15.45 V

Conduction of diode = 7.11 %

Iavg = 0.232 A

Ip = 0.449 A

Case (ii)

Vavg = 16.18 V

Conduction of diode = 2.25 %

Iavg = 0.735 A

Ip = 1.453 A

Explanation:

Voltage at the secondary side of the transformer is

Vrms = Vpri/turn ratio

Vrms = 120/10 = 12 V

The relation between rms voltage and peak voltage is

Vp = Vrms/√2

Vp = 12√2 = 16.97 V

Vd = 0.7 V

First we will calculate all the required parameters for the 10% ripple voltage and then for 1% ripple voltage.

case (i) 10% of the peak output:

(a) What average output voltage results?

Average output voltage = Vavg = Vp - Vd - 0.5Vr

Where Vp is the peak output voltage Vd is the voltage drop of diode and Vr is the ripple voltage which is given as a percentage of Vp

Vavg = Vp - Vd - 0.5Vr

Vavg = 16.97 - 0.7 - 0.5[0.1(16.97 - 0.7)]

Vavg = 15.45 V

(b) What fraction of the cycle does the diode conduct?

ω = √2Vr/Vp - Vd

ω = √2*0.1(Vp-Vd)/Vp - Vd

ω = √2*0.1(16.97-0.7)/16.97 - 0.7

ω = 0.447 rad

Conduction of diode = (ω/2π)*100

Conduction of diode = (0.447/2π)*100

Conduction of diode = 7.11 %

(c) What is the average diode current?

Average current = Iavg = Vavg/R[ 1 + π( √2(Vp - Vd)/0.1(Vp-Vd))]

Average current = Iavg = 15.45/1000[ 1 + π( √2(16.97 - 0.7)/0.1(16.97-0.7))]

Average current = Iavg = 0.232 A

(d) What is the peak diode current?

Peak current = Ip = Vavg/R[ 1 + 2π( √2(Vp - Vd)/0.1(Vp-Vd))]

Peak current = Ip = 15.45/1000[ 1 + 2π( √2(16.97 - 0.7)/0.1(16.97-0.7))]

Peak current = Ip = 0.449 A

case (ii) 1% of the peak output:

(a) What average output voltage results?

Vavg = 16.97 - 0.7 - 0.5[0.01(16.97 - 0.7)]

Vavg = 16.18 V

(b) What fraction of the cycle does the diode conduct?

ω = √2*0.01(Vp-Vd)/Vp - Vd

ω = √2*0.01(16.97-0.7)/16.97 - 0.7

ω = 0.1417 rad

Conduction of diode = (0.1417/2π)*100

Conduction of diode = 2.25 %

(c) What is the average diode current?

Average current = Iavg = 16.18/1000[ 1 + π( √2(16.97 - 0.7)/0.01(16.97-0.7))]

Average current = Iavg = 0.735 A

(d) What is the peak diode current?

Peak current = Ip = 16.18/1000[ 1 + 2π( √2(16.97 - 0.7)/0.01(16.97-0.7))]

Peak current = Ip = 1.453 A

3 0
3 years ago
Where does every piece of matter begin?
Margarita [4]
Every piece of matter begins “Out of this world”
6 0
3 years ago
Una carga de -10Mc está situada a 20cm delante de otra carga de 5 Mc. Calcular la fuerza electrostática en Newton ejercida por u
tino4ka555 [31]

Answer:

a)  force between them is attraction,   b)  F = 1.125 10⁻² N

Explanation:

In this case the electric force is given by Coulomb's law

          F =k \frac{q_1q_2}{r^2}

           

In the exercise they give us the values ​​of the loads

          q1 = - 10 mC = -10 10⁻³ C

          q2 = 5 mC = 5 10⁻³ C

           d = 20 cm = 0.20 m

let's calculate

          F = 9 10⁹ \frac{10 \ 10^{-3} \ 5 \ 10^{-3}}{0.20^2}

          F = 1.125 10⁻² N

To find the direction of the force we use that charges of the same sign repel each other, as in this case there is a positive and a negative charge, the force between them is attraction

7 0
3 years ago
Other questions:
  • Assume that a person bouncing a ball represents a closed system. Which statement best describes how the amounts of the ball's po
    8·1 answer
  • What two organelles should be labeled that WOULD NOT be found in an animal cell?
    7·1 answer
  • An appliance with a 20.0-2 resistor has a power rating of 15.0 W. Find the maximum current which can flow safely through the app
    7·1 answer
  • How many satellites exist in Earth’s orbit today?
    5·1 answer
  • Ocean waves are hitting a beach at a rate of 3.5 hz. what is the period of the waves?
    7·1 answer
  • How many atoms are in something determines its?
    6·1 answer
  • Drill bits are attached to power drills to make holes. Drill bits are made of {BLANK 1} because they’re hard and resistant to co
    9·1 answer
  • A circuit consists of two very low-resistance rails separated by 0.300 m, with a 50.0 ohm resistor connected across them at one
    15·1 answer
  • The person selling the bananas in the market says that they have a 'weight' of 1 kg. Explain what is
    5·1 answer
  • How much heat transfer is necessary to raise the temperature of a 13.6 kg piece of ice from −20.0ºC to 130ºC? specific heat capa
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!