Answer:
![\frac{dQ}{dt} = 966 W](https://tex.z-dn.net/?f=%5Cfrac%7BdQ%7D%7Bdt%7D%20%3D%20966%20W)
Explanation:
As we know that the rate of heat transfer due to temperature difference is given by the formula
![\frac{dQ}{dt} = \frac{KA(\Delta T)}{L}](https://tex.z-dn.net/?f=%5Cfrac%7BdQ%7D%7Bdt%7D%20%3D%20%5Cfrac%7BKA%28%5CDelta%20T%29%7D%7BL%7D)
here we know that
![K = 0.69 W/m-K](https://tex.z-dn.net/?f=K%20%3D%200.69%20W%2Fm-K)
A = 4 m x 7 m
thickness = 30 cm
temperature difference is given as
![\Delta T = 20 - 5 = 15 ^oC](https://tex.z-dn.net/?f=%5CDelta%20T%20%3D%2020%20-%205%20%3D%2015%20%5EoC)
now we have
![\frac{dQ}{dt} = \frac{(0.69W/m-K)(28 m^2)(15)}{0.30}](https://tex.z-dn.net/?f=%5Cfrac%7BdQ%7D%7Bdt%7D%20%3D%20%5Cfrac%7B%280.69W%2Fm-K%29%2828%20m%5E2%29%2815%29%7D%7B0.30%7D)
![\frac{dQ}{dt} = 966 W](https://tex.z-dn.net/?f=%5Cfrac%7BdQ%7D%7Bdt%7D%20%3D%20966%20W)
Let's use the mirror equation to solve the problem:
![\frac{1}{f}= \frac{1}{d_o}+ \frac{1}{d_i}](https://tex.z-dn.net/?f=%20%5Cfrac%7B1%7D%7Bf%7D%3D%20%5Cfrac%7B1%7D%7Bd_o%7D%2B%20%5Cfrac%7B1%7D%7Bd_i%7D%20%20%20)
where f is the focal length of the mirror,
![d_o](https://tex.z-dn.net/?f=d_o)
the distance of the object from the mirror, and
![d_i](https://tex.z-dn.net/?f=d_i)
the distance of the image from the mirror.
For a concave mirror, for the sign convention f is considered to be positive. So we can solve the equation for
![d_i](https://tex.z-dn.net/?f=d_i)
by using the numbers given in the text of the problem:
![\frac{1}{12 cm}= \frac{1}{5 cm}+ \frac{1}{d_i}](https://tex.z-dn.net/?f=%20%5Cfrac%7B1%7D%7B12%20cm%7D%3D%20%5Cfrac%7B1%7D%7B5%20cm%7D%2B%20%5Cfrac%7B1%7D%7Bd_i%7D%20%20%20)
![\frac{1}{d_i}= -\frac{7}{60 cm}](https://tex.z-dn.net/?f=%20%5Cfrac%7B1%7D%7Bd_i%7D%3D%20-%5Cfrac%7B7%7D%7B60%20cm%7D%20%20)
![d_i = -8.6 cm](https://tex.z-dn.net/?f=d_i%20%3D%20-8.6%20cm)
Where the negative sign means that the image is virtual, so it is located behind the mirror, at 8.6 cm from the center of the mirror.
True I hope this helps you out
Answer:
cohesive properties
Explanation:
The property of cohesion allows liquid water to have <u>no tension on the surface</u>.
Answer: A
Explanation: STEP BY STEP