The kinetic energy with which the hammer strikes the ground
is exactly the potential energy it had at the height from which it fell.
Potential energy is (mass) x (gravity) x (height) .... directly proportional
to height.
Starting from double the height, it starts with double the potential
energy, and it reaches the bottom with double the kinetic energy.
Answer:
Four fundamental forces are gravitational, electromagnetic, strong, and weak.
Explanation:
The gravitational and electromagnetic interactions, which produce significant long-range forces whose effects can be seen directly in everyday life and the strong and weak interactions, which produce forces at minuscule, subatomic distances and govern nuclear interactions.
Answer:
I THINK it’s A
Explanation:
Because all the other answers don’t make sense.
Answer:
shown below
Explanation:
2 x 10⁷ as a number is 20,000,000
20,000,000 - 10 = 19,999,990
It went 19,999,990 m/h
in km/h:
19,999,990 / 1000 = 19,999.99 km/h
in km/s
19,999,990 / 3,600,000 = ~5.56 km/s
in m/s
19,999,990 / 3600 = ~5555.56 m/s
Answer:
d = 6.43 cm
Explanation:
Given:
- Speed resistance coefficient in silicon n = 3.50
- Memory takes processing time t_p = 0.50 ns
- Information is to be obtained within T = 2.0 ns
Find:
- What is the maximum distance the memory unit can be from the central processing unit?
Solution:
- The amount of time taken for information pulse to travel to memory unit:
t_m = T - t_p
t_m = 2.0 - 0.5 = 1.5 ns
- We will use a basic relationship for distance traveled with respect to speed of light and time:
d = V*t_m
- Where speed of light in silicon medium is given by:
V = c / n
- Hence, d = c*t_m / n
-Evaluate: d = 3*10^8*1.5*10^-9 / 3.50
d = 0.129 m 12.9 cm
- The above is the distance for pulse going to and fro the memory and central unit. So the distance between the two is actually d / 2 = 6.43 cm