(a) 0.448
The gravitational potential energy of a satellite in orbit is given by:

where
G is the gravitational constant
M is the Earth's mass
m is the satellite's mass
r is the distance of the satellite from the Earth's centre, which is sum of the Earth's radius (R) and the altitude of the satellite (h):
r = R + h
We can therefore write the ratio between the potentially energy of satellite B to that of satellite A as

and so, substituting:

We find

(b) 0.448
The kinetic energy of a satellite in orbit around the Earth is given by

So, the ratio between the two kinetic energies is

Which is exactly identical to the ratio of the potential energies. Therefore, this ratio is also equal to 0.448.
(c) B
The total energy of a satellite is given by the sum of the potential energy and the kinetic energy:

For satellite A, we have

For satellite B, we have

So, satellite B has the greater total energy (since the energy is negative).
(d) 
The difference between the energy of the two satellites is:

Answer:
total distance = 1868.478 m
Explanation:
given data
accelerate = 1.68 m/s²
time = 14.2 s
constant time = 68 s
speed = 3.70 m/s²
to find out
total distance
solution
we know train start at rest so final velocity will be after 14 .2 s is
velocity final = acceleration × time ..............1
final velocity = 1.68 × 14.2
final velocity = 23.856 m/s²
and for stop train we need time that is
final velocity = u + at
23.856 = 0 + 3.70(t)
t = 6.44 s
and
distance = ut + 1/2 × at² ...........2
here u is initial velocity and t is time for 14.2 sec
distance 1 = 0 + 1/2 × 1.68 (14.2)²
distance 1 = 169.37 m
and
distance for 68 sec
distance 2= final velocity × time
distance 2= 23.856 × 68
distance 2 = 1622.208 m
and
distance for 6.44 sec
distance 3 = ut + 1/2 × at²
distance 3 = 23.856(6.44) - 0.5 (3.70) (6.44)²
distance 3 = 76.90 m
so
total distance = distance 1 + distance 2 + distance 3
total distance = 169.37 + 1622.208 + 76.90
total distance = 1868.478 m
Concave lens. These are used in making the objectives of reflection telescopes
Answer:
1/i + 1/o = 1/f thin lens equation
i = 33 * 8.9 / (33 - 8.9) = 12.2 cm to right of first lens
27 - 12.2 = 14.8 cm to left of second lens
i = 14.8 * 8.9 / (14.8 - 8.9) = 22,3 cm to right of second lens
Answer:
Average speed: 0.5 m/s. Average velocity: 0
Explanation:
Average speed is given by:

where
d is the total distance covered (the length, of one lap of the track, so d = 400 m)
t is the time taken to cover that distance (so, t = 800 s)
Substituting,

Instead, average velocity is defined as

where this time,
d is the displacement, which is the vector connecting the starting point to the final point of the motion
t is still the time taken (800 s)
However, in this case the walker starts and finishes his trip at the same point: therefore, the displacement is zero (d=0), and this means that the average velocity is zero as well.