Answer:
The speed is the same as long as the reflection is regular.
Explanation:
This is because in regular reflection, the angle of incidence is equal to the angle of reflection in accordance with the second law of reflection.
Since speed of light depends on the angle of the light ray it makes with the reflecting surface, the speed is the same
Answer:
coasting down hill on a bicycle
Explanation:
Coasting down the hill on a bicycle is a typical example of how kinetic energy is being transformed to potential energy in a system.
Kinetic energy is the energy due to the motion of a body, it can be derived using the expression below;
K.E =
m v²
Potential energy is the energy due to the position of a body. It can be derived using;
P.E = mgh
m is the mass
v is the velocity
g is the acceleration due to gravity
h is the height
Now, at the top of the hill, the potential energy is at the maximum. As the bicycle coasts down the potential energy is converted to kinetic energy.
<span>A tidally locked body in synchronous rotation (the moon) takes just as long to rotate around its own axis as it </span>does<span> to revolve around its partner (the earth). In other words, the moon spins on its axis at the same rate it orbits the earth.</span>
Answer:
Sleep, behavior patterns, mental state, and job
Explanation:
Answer:
6.65m/s
Explanation:
Using the equation of motion
S = ut + 1/2gt²
S is the height of fall
t is the time
u is the horizontal velocity
g is the acceleration due to gravity
Given
S = 300 + 50
S = 350m
t = 7.8seconds
g = 9.8m/s^2
Get S
S = 7.8u + 1/2(9.8)(7.8)²
S = 7.8u + 298.116
350 = 7.8u + 298.116
7.8u = 350 - 298.116
7.8u = 51.884
u = 51.884/7.8
u = 6.65m/s
Hence the rock's horizontal velocity was 6.65m/s