Answer:
Explanation:
a )
Each blade is in the form of rod with axis near one end of the rod
Moment of inertia of one blade
= 1/3 x m l²
where m is mass of the blade
l is length of each blade.
Total moment of moment of 3 blades
= 3 x
x m l²
ml²
2 )
Given
m = 5500 kg
l = 45 m
Putting these values we get
moment of inertia of one blade
= 1/3 x 5500 x 45 x 45
= 37.125 x 10⁵ kg.m²
Moment of inertia of 3 blades
= 3 x 37.125 x 10⁵ kg.m²
= 111 .375 x 10⁵ kg.m²
c )
Angular momentum
= I x ω
I is moment of inertia of turbine
ω is angular velocity
ω = 2π f
f is frequency of rotation of blade
d )
I = 111 .375 x 10⁵ kg.m² ( Calculated )
f = 11 rpm ( revolution per minute )
= 11 / 60 revolution per second
ω = 2π f
= 2π x 11 / 60 rad / s
Angular momentum
= I x ω
111 .375 x 10⁵ kg.m² x 2π x 11 / 60 rad / s
= 128.23 x 10⁵ kgm² s⁻¹ .
The correct answer is compound
Answer:
The speed is 15 km/h or 4.16 m/s.
Explanation:
A boat travels the distance that separates Gran Canaria from Tenerife (90 km) in 6 hours. Which the speed of the boat in km / h? And in m / s?
Given that,
Distance, d = 90 km = 90000 m
Time, t = 6 hours = 21600 s
Speed = distance/time

or

So, the required speed is 15 km/h or 4.16 m/s.
By putting this special transportation plastic on the bottom of the sled, because the transportation plastic is slick. that is what the transport bins slide around on. (p.s) the plastic is really expensive!
Answer:
31677.2 lb
Explanation:
mass of hammer (m) = 3.7 lb
initial velocity (u) = 5.8 ft/s
final velocity (v) = 0
time (t) = 0.00068 s
acceleration due to gravity (g) 32 ft/s^{2}
force = m x ( a + g )
where
- m is the mass = 3.7 lb
- g is the acceleration due to gravity = 32 ft/s^{2}
- a is the acceleration of the hammer
from v = u + at
a = (v-u)/ t
a = (0-5.8)/0.00068 = -8529.4 ( the negative sign showa the its decelerating)
we can substitute all required values into force= m x (a+g)
force = 3.7 x (8529.4 + 32) = 31677.2 lb