Answer:
option C
Explanation:
given,
mass of the three planet is same
radius of the planets are
R₁ > R₂ > R₃
expression of escape velocity

G is the gravitational constant
M is the mass of the planet
R is the radius of the planet
from the above expression we can clearly conclude that the escape velocity is inversely proportional to the radius of the Planet.
radius of planet increases escape velocity decreases.
Hence planet 3 has the smallest radius so the escape velocity of the third planet will be maximum.
The correct answer is option C
Explanation:
Given that,
Initial speed of a car, u = 60 km/h = 16.67 m/s
Acceleration, a = 2m/s²
Final speed, v = 120 km/h = 33.33 m/s
We need to find the distance traveled and the time taken to make the distance.
acceleration = rate of change of velocity

let the distance be d.

Hence, the distance traveled and the time taken to make the distance is 208.25 m and 8.33 seconds respectively.
<u>Answer:</u> The elevation in boiling point is 1.024°C.
<u>Explanation:</u>
To calculate the elevation in boiling point, we use the equation:

where,
i = Van't Hoff factor = 2 (for NaCl)
= change in boiling point = ?
= boiling point constant = 
m = molality = 1.0 m
Putting values in above equation, we get:

Hence, the elevation in boiling point is 1.024°C.
Answer:84Nm
Explanation:
force=400N
Distance=0.210m
Workdone=force x distance
Workdone=400 x 0.210
Workdone=84Nm