Explanation:
B. leads to muscle strain.
Answer:
Global dependence on fossil fuels has associated social costs.
Explanation:
Increased dependence on fossil fuels reduces their availability. When the demand is high and the availability is low, the price rises. Not every nation would then be able to afford buying fossil fuels at such high costs.
Developing and underdeveloped countries would then be left behind and only the wealthy nations would be able to afford fossil fuel purchase. This would be the immediate impact of global dependence on fossil fuels.
Fossil fuels are mainly coal, petroleum and natural gas. Since fossil fuels are non-renewable in nature over exploitation may lead to fossil fuels getting exhausted.
112/2.63= 42.586
42.586 is your answer I need 20 characters
Answer:
a) <em>473.33 nm
</em>
<em>b) 568 nm</em><em> and </em><em>406 nm</em>
<em>c) </em>bluish green and blue
Explanation:
a) As the light traverses the layer of oil it first reflects at the front surface of the oil. Here the index of refraction increases from that of air to that of the oil , so a phase change occurs. The light then reflects from the rear surface of oil. The index of refraction increases from that of the oil to that of the glass , so again a phase change occurs. Thus two phase changes occur.
In thin-film interference with 0 or 2 phase changes, condition for constructive interference is:
2t=mλ/n
So:
λ=
2tn/m
<em><u>For m=1</u></em>
λ=1420 nm
<em><u>For m=2</u></em>
λ=710 nm
<em><u>For m=3</u></em>
λ=473.33 nm
<em><u>For m=4</u></em>
λ=355 nm
<em>Thus the only wavelength in the visible spectrum </em><em>(400 - 700 nm)</em><em> that will give constructive interference is </em><em>473.33 nm
</em>
b)
In thin-film interference with 0 or 2 phase changes, condition for destructive interference is:
2t=(m+1/2)λ/n=(2m+1)*λ/2n
so;
λ=4tn/(2m+1)
<em><u>For m=1</u></em>
λ=946.667 nm
<em><u>For m=2</u></em>
λ=568 nm
<em><u>For m=3</u></em>
λ=405.33 nm
<em><u>For m=4</u></em>
λ=315.56 nm
<em>Thus the wavelengths in the visible spectrum (</em><em>400 to 700 nm)</em><em> that will give destructive interference are </em><em>568 nm</em><em> and </em><em>406 nm</em>
<em>c) </em>The color of reflected light is bluish green since the wavelength is 473.3 nm . We know that the colors of reflected and transmitted light are complimentary to each other.Thus the color of transmitted light is blue (due to the combination of wavelengths 568 nm (green) and 406 nm (deep violet).
<em />
It is hot today
Climate is the annual weather/long period time.