The red at the bottom is just the holder for the beaker. It’s not apart of the density.
There are two particular cases, the first is when Object A is attracted to the neutral wall. This would indicate that the object is not neutral, as there is an attraction.
At the same time we know that Object A is attracted to an object B. And therefore, the load of A must be opposite to that of B. Remember that opposite charges attract each other. If the charge of object B is positive, then the charge of object A will be negative.
Option B is correct: It has a negative charge.
Answer:
Exercise 1;
The centripetal acceleration is approximately 94.52 m/s²
Explanation:
1) The given parameters are;
The diameter of the circle = 8 cm = 0.08 m
The radius of the circle = Diameter/2 = 0.08/2 = 0.04 m
The speed of motion = 7 km/h = 1.944444 m/s
The centripetal acceleration = v²/r = 1.944444²/0.04 ≈ 94.52 m/s²
The centripetal acceleration ≈ 94.52 m/s²
For a star that has the same apparent brightness as Alpha Centauri A ( 2.7×10−8watt/m2 is mathematically given as
L=2.7*10^30w
<h3> What is its luminosity?</h3>
Generally, the equation for the luminosity is mathematically given as
L=4*\pi^2*b
Therefore
L=4*\pi^2*b
L=4* \pi *(2.83*10^{18})*2.7*10^{-8}
L=2.7*10^30
In conclusion, the luminosity
L=2.7*10^30w
Read more about Light
brainly.com/question/25770676
yeah it definitely 2 .:) :)