<span>(m^4+3m^3-26m^2-2m-24)÷(m-4)
step 1: m^4+3m^3+26m^2-2m-24
----------------------------------
m-4
step 2: m^4+4m^3+7m^3-28m^2+2m^2-8m+6m-24
----------------------------------------------------------
m-4
step 3: m^3 (m-4)+7m^2x(m-4)+2mx(m-4)+6(m-4)
---------------------------------------------------------
m-4
step 4: (m-4)x(m^3+7m^2+2m+6)
----------------------------------
m-4
step 5: (m-4)
</span><span><span> --------- cancelled out</span>
m-4
answer: m^3+7m^2+2m+6
</span>
The volume of a cone is 1/3 the volume of a cylinder that perfectly encloses it.
So, the volume of a cone that fits perfectly inside the can is 15/3 = 5.
Answer:
1. slope: (y2-y1)/(x2-x1)
(6,38), (9,32)
(32-38)/(9-6) = -6/3 = -2
38 = -2(6) + b
38 = -12 +b, b = 50
y = -2x + 50
2a. Slope = -80, the slope means how many cars left per hour after closing. Y- intercept = 600, cars in lot during closing.
2b. use the equation: y = -80x + 600
Plug in 3 into the equation
y = -80(3) + 600, y = -240 + 600, y = 360 cars
2c. For it to have 0 cars, plug in 0 for y
0 = -80x + 600
-600 = -80x, solve for x
x = 7.5 hours