<h3><u>Answer;</u></h3>
HCl and KCl
<h3><u>Explanation</u>;</h3>
- Strong electrolytes are strong bases and acids.
- HCl is a strong acid; it dissociates completely to form H+ and Cl- ions. Thus, it is a strong, rather than weak, electrolyte.
- CH3COOH is acetic acid, a weak acid. Only some of it will dissociate (to H+ and acetate ions), thus, it will only be a weak electrolyte.
- NH3 will react with water as a weak base: NH3 + H2O → NH4+ + OH-. It will thus also be a weak electrolyte.
- KCl is a soluble ionic compound, and as such, it will be a strong electrolyte.
Assuming it has no electrical charge, your electron count would be equal to the atomic number.
Answer: 
Explanation:
A double displacement reaction is one in which exchange of ions take place. The salts which are soluble in water are designated by symbol (aq) and those which are insoluble in water and remain in solid form are represented by (s) after their chemical formulas.
A double displacement reaction in which one of the product is formed as a solid is called as precipitation reaction.
The balanced chemical equation is:
Bi (Bismuth), will have the strongest metallic character, as it is the last element in group 15.
<u>Answer:</u> The nuclear binding energy of the given element is 
<u>Explanation:</u>
For the given element 
Number of protons = 3
Number of neutrons = (6 - 3) = 3
We are given:

M = mass of nucleus = 
![M=[(3\times 1.00728)+(3\times 1.00866)]=6.04782amu](https://tex.z-dn.net/?f=M%3D%5B%283%5Ctimes%201.00728%29%2B%283%5Ctimes%201.00866%29%5D%3D6.04782amu)
Calculating mass defect of the nucleus:
![\Delta m=M-A\\\Delta m=[6.04782-6.015126)]=0.032694amu=0.032694g/mol](https://tex.z-dn.net/?f=%5CDelta%20m%3DM-A%5C%5C%5CDelta%20m%3D%5B6.04782-6.015126%29%5D%3D0.032694amu%3D0.032694g%2Fmol)
Converting this quantity into kg/mol, we use the conversion factor:
1 kg = 1000 g
So, 
To calculate the nuclear binding energy, we use Einstein equation, which is:

where,
E = Nuclear binding energy = ? J/mol
= Mass defect = 
c = Speed of light = 
Putting values in above equation, we get:

Hence, the nuclear binding energy of the given element is 