Here in order to find out the distance between two planes after 3 hours can be calculated by the concept of relative velocity

here
speed of first plane is 700 mi/h at 31.3 degree


speed of second plane is 570 mi/h at 134 degree


now the relative velocity is given as


now the distance between them is given as



so the magnitude of the distance is given as

miles
so the distance between them is 2985.6 miles
Answer:
a = 156.14 m/s^2
Explanation:
Using the laws of newton:
∑F = ma
where ∑F is the sumatory of forces, m the mass and a the aceleration.
so:
F -
= ma
where F is the force from the hockey stick and
is the force of friction.
Replacing values, we get:
(30.2N) - (3.5N)= (0.171kg)a
Finally, solving for a:
a = 156.14 m/s^2
Answer:
b
Explanation:
Given:
- The ball is fired at a upward initial speed v_yi = 2*v
- The ball in first experiment was fired at upward initial speed v_yi = v
- The ball in first experiment was as at position behind cart = x_1
Find:
How far behind the cart will the ball land, compared to the distance in the original experiment?
Solution:
- Assuming the ball fired follows a projectile path. We will calculate the time it takes for the ball to reach maximum height y. Using first equation of motion:
v_yf = v_yi + a*t
Where, a = -9.81 m/s^2 acceleration due to gravity
v_y,f = 0 m/s max height for both cases:
For experiment 1 case:
0 = v - 9.81*t_1
t_1 = v / 9.81
For experiment 2 case:
0 = 2*v - 9.81*t_2
t_2 = 2*v / 9.81
The total time for the journey is twice that of t for both cases:
For experiment 1 case:
T_1 = 2*t_1
T_1 = 2*v / 9.81
For experiment 2 case:
T_2 = 2*t_2
T_2 = 4*v / 9.81
- Now use 2nd equation of motion in horizontal direction for both cases:
x = v_xi*T
For experiment 1 case:
x_1 = v_x1*T_1
x_1 = v_x1*2*v / 9.81
For experiment 2 case:
x_2 = v_x2*T_2
x_2 = v_x2*4*v / 9.81
- Now the x component of the velocity for each case depends on the horizontal speed of the cart just before launching the ball. Using conservation of momentum we see that both v_x2 = v_x1 after launch. Since the masses of both ball and cart remains the same.
- Hence; take ratio of two distances x_1 and x_2:
x_2 / x_2 = v_x2*4*v / 9.81 * 9.81 / v_x1*2*v
Simplify:
x_1 / x_2 = 2
- Hence, the amount of distance traveled behind the cart in experiment 2 would be twice that of that in experiment 1.
The correct is b: malleable and ductile.