Its rays point away from the charge
Answer:
Current, I = 0.0011 A
Explanation:
It is given that,
Diameter of rod, d = 2.56 cm
Radius of rod, r = 1.28 cm = 0.0128 m
The resistivity of the pure silicon, 
Length of rod, l = 20 cm = 0.2 m
Voltage, 
The resistivity of the rod is given by :


R = 893692.30 ohms
Current flowing in the rod is calculated using Ohm's law as :
V = I R


I = 0.0011 A
So, the current flowing in the rod is 0.0011 A. Hence, this is the required solution.
The answer to this question is <span>13,537</span>
Answer:
Isabella will not be able to spray Ferdinand.
Explanation:
We'll begin by calculating the time taken for the water to get to the ground from the hose held at 1 m above the ground. This can be obtained as follow:
Height (h) = 1 m
Acceleration due to gravity (g) = 9.8 m/s²
Time (t) =.?
h = ½gt²
1 = ½ × 9.8 × t²
1 = 4.9 × t²
Divide both side by 4.9
t² = 1/4.9
Take the square root of both side
t = √(1/4.9)
t = 0.45 s
Next, we shall determine the horizontal distance travelled by the water. This can be obtained as follow:
Horizontal velocity (u) = 3.5 m/s
Time (t) = 0.45 s
Horizontal distance (s) =?
s = ut
s = 3.5 × 0.45
s = 1.58 m
Finally, we shall compare the distance travelled by the water and the position to which Ferdinand is located to see if they are the same or not. This is illustrated below:
Ferdinand's position = 10 m
Distance travelled by the water = 1.58 m
From the above, we can see that the position of the water (i.e 1.58 m) and that of Ferdinand (i.e 10 m) are not the same. Thus, Isabella will not be able to spray Ferdinand.