One mole (abbreviated mol) is equal to 6.022×1023 molecular entities (Avogadro's number), and each element has a different molar mass depending on the weight of 6.022×1023 of its atoms (1 mole). The molar mass of any element can be determined by finding the atomic mass of the element on the periodic table.
Answer: On losing 6 moles of water, cobalt chloride forms unstable violet-coloured ions, before generating its stable blue-coloured anhydrous form.
Explanation:
The hydrated cobalt chloride loses its 6 water of crystallization, then dissociates into ions: cobalt ions and chlorine ions that appear violet, and quickly combined to form the stable anhydrous Cobalt chloride with blue colour.
Answer:
190.4g
Explanation:
1.6mol of KBr (119.002g KBr/1 mol) = 190.4g
since you want to find grams, take the molar mass of KBr (119.002) per 1 mol and use it as your conversion factor (119.002g KBr/1 mol) which will then cancel out mols and leave you with grams.
Explanation:
A strip of solid palladium metal is put into a beaker of nicl2
Palladium (Pd) + Nickel Chloride (NiCl2)
To answer this question properly you must refer to the reactivity series.
The activity series is a chart of metals listed in order of declining relative reactivity. The top metals are more reactive than the metals on the bottom.
In this series, Nickel is higher than Palladium. This means that if a Palladium strip is placed into a solution of a Ni salt, then a reaction will not take place, nothing would happen.
Because Pd is lower than Ni in the reactivity series.
There is no reaction so no equation.