The electron should experience a greater acceleration due to it's significantly smaller mass and should fall through distance "d" in a shorter amount of time.
<u>Explanation:</u>
The electron force can be expressed as F=qE. According to Newton's second law of motion force can be expressed as F=ma. This can be written as a=F/m. Substituting electric force expression for "F" in this equation, we get a=qE/m. This means acceleration is conversely proportional to mass and directly to electric field and charge. This means that proton having significantly larger mass than electron should experience smaller amount of acceleration and would take longer to fall at distance "d".
On the other hand, the electron would experience greater acceleration due to it's significantly smaller mass and would fall faster at distance "d", unlike the situation of proton.
Answer:
5Fe⁺² + MnO₄⁻ + 8H⁺ => 5Fe⁺³ + Mn⁺² + 4H₂O
Explanation:
Fe⁺² + MnO₄⁻ + H⁺ => Mn⁺² + Fe⁺³ + H₂O
5(Fe⁺² => Fe⁺³ + 1e⁻) => 5Fe⁺² => 5Fe⁺³ + 5e⁻
<u>MnO₄⁻ + 5e⁻ => Mn⁺² => MnO₄⁻ + 8H⁺ + 5e⁻ => Mn⁺² + 4H₂O</u>
=> 5Fe⁺² + MnO₄⁻ + 8H⁺ => 5Fe⁺³ + Mn⁺² + 4H₂O
Answer:
The volume of the air is 0.662 L
Explanation:
Charles's Law is a gas law that relates the volume and temperature of a certain amount of gas at constant pressure. This law says that for a given sum of gas at a constant pressure, as the temperature increases, the volume of the gas increases and as the temperature decreases, the volume of the gas decreases because the temperature is directly related to the energy of the movement they have. the gas molecules. This is represented by the quotient that exists between volume and temperature will always have the same value:

If you have a certain volume of gas V1 that is at a temperature T1 at the beginning of the experiment and several the volume of gas to a new value V2, then the temperature will change to T2, and it will be true:

In this case:
- V1= 0.730 L
- T1= 28 °C= 301 °K (0°C= 273°K)
- V2= ?
- T2= 0°C= 273 °K
Replacing:

Solving:

V2=0.662 L
<u><em>The volume of the air is 0.662 L</em></u>
Answer:
The physical states that are represented by each graph region are the liquid and the solid, the highest temperature is the liquid and as it freezes it becomes a solid. The particles change because when it's a liquid, it isn't that compact it's just spreading smootly but as it freezes the atoms start to stick together and become compact.
Explanation:
Hope that made sense!