Answer:
The answer to your question is:
a) t1 = 2.99 s ≈ 3 s
b) vf = 39.43 m/s
Explanation:
Data
vo = 10 m/s
h = 74 m
g = 9.81 m/s
t = ? time to reach the ground
vf = ? final speed
a) h = vot + (1/2)gt²
74 = 10t + (1/2)9.81t²
4.9t² + 10t -74 = 0 solve by using quadratic formula
t = (-b ± √ (b² -4ac) / 2a
t = (-10 ± √ (10² -4(4.9(-74) / 2(4.9)
t = (-10 ± √ 1550.4 ) / 9.81
t1 = (-10 + √ 1550.4 ) / 9.81 t2 = (-10 - √ 1550.4 ) / 9.81
t1 = (-10 ± 39.38 ) / 9.81 t2 = (-10 - 39.38) / 9.81
t1 = 2.99 s ≈ 3 s t2 = is negative then is wrong there are
no negative times.
b) Formula vf = vo + gt
vf = 10 + (9.81)(3)
vf = 10 + 29.43
vf = 39.43 m/s
Answer:
K2 = N*K1
Explanation:
The force you apply to each section is the same you apply to the whole spring, but the extension of each section is dX/N (if dX is the extension of the entire spring)
The answer is a inductive
Answer:
true
Explanation:
a wheelbarrow has its load situated between the fulcrum and the force the wheel Barrow is 2nd class because of its resistance between the force and the axis