Unscrambling
1. resting heart rate
2. overload
3. workout
4. specificity
5. cool-down
6. progression
7. warm-up
8. the last one can only be instance, but there was a typo on the paper.
Answer:132.0285
Explanation: Hope this helps!
Answer:
distance = 33.124 meters
Explanation:
To solve this question, we will use one of the equations of motion which is:
s = ut + 0.5a * t^2
where:
s is the distance that we want to get
u is the initial velocity = 0
a is the acceleration due to gravity = 9.8 m/sec^2
t is the time = 2.6 sec
Substitute with the givens in the equation to get the distance as follows:
s = ut + 0.5a * t^2
s = (0)(2.6) + 0.5(9.8)(2.6)^2
s = 33.124 meters
Hope this helps :)
Answer: 321 J
Explanation:
Given
Mass of the box 
Force applied is 
Displacement of the box is 
Velocity acquired by the box is 
acceleration associated with it is 

Work done by force is 

change in kinetic energy is 

According to work-energy theorem, work done by all the forces is equal to the change in the kinetic energy
![\Rightarrow W+W_f=\Delta K\quad [W_f=\text{Work done by friction}]\\\\\Rightarrow 375+W_f=54\\\Rightarrow W_f=-321\ J](https://tex.z-dn.net/?f=%5CRightarrow%20W%2BW_f%3D%5CDelta%20K%5Cquad%20%5BW_f%3D%5Ctext%7BWork%20done%20by%20friction%7D%5D%5C%5C%5C%5C%5CRightarrow%20375%2BW_f%3D54%5C%5C%5CRightarrow%20W_f%3D-321%5C%20J)
Therefore, the magnitude of work done by friction is 
Answer:

Explanation:
The three resistors are connected in parallel: this means that the potential difference across each resistor is the same as the voltage of the battery. This can be calculated using the information about the
resistor: in fact, since we know its resistance and the current flowing through it (0.155 A), we can find the potential difference across this resistor, which is equal to the voltage of the battery:

We also know the total current in the circuit, 0.250 A. This means that we can find the total resistance of the circuit, using Ohm's law:

So now we now the total resistance and the resistance of two of the 3 resistors; therefore, we can find the resistance of the 3rd resistor:
