Vocabulary should be, I think:
I. Hypothesis
II. Evidence, data
III. Experiment
What is your question exactly?
Answer:
200 N
Explanation:
Given that,
A ball traveling at 15 m/s hits a bat with a force of 200 N.
We need to find the force that the bat moving at 20 m/s hit the ball with.
We know that, this probelm is based on Newton's third law of motion. The force that the ball exerting on bat should be equal to the force that the bat exerting in the ball but in opposite direction.
It would mean that the ball hits the ball with a force of 200 N. Hence, the correct option is (a).
The horizontal change between two points on a graph is called the 'run'.
The vertical change between two points is called the 'rise'.
1750 meters.
First, determine how long it takes for the kit to hit the ground. Distance over constant acceleration is:
d = 1/2 A T^2
where
d = distance
A = acceleration
T = time
Solving for T, gives
d = 1/2 A T^2
2d = A T^2
2d/A = T^2
sqrt(2d/A) = T
Substitute the known values and calculate.
sqrt(2d/A) = T
sqrt(2* 1500m / 9.8 m/s^2) = T
sqrt(3000m / 9.8 m/s^2) = T
sqrt(306.122449 s^2) = T
17.49635531 s = T
Rounding to 4 significant figures gives 17.50 seconds. Since it will take
17.50 seconds for the kit to hit the ground, the kit needs to be dropped 17.50
seconds before the plane goes overhead. So just simply multiply by the velocity.
17.50 s * 100 m/s = 1750 m