1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
EleoNora [17]
3 years ago
14

What new information about hte role of the y subunit of ATP Synthase did this researcdh project elucidate? how does the subunit

serve as a resversible motor?
Engineering
1 answer:
nignag [31]3 years ago
4 0

Answer:

Explanation:

it is observed given the information by the y subunit of ATP synthase that when one variable is changed, F1 motor becomes reversible and this is achieved by having the subunit as the reversible motor.

You might be interested in
Water flows steadily through the pipe as shown below, such that the pressure at section (1) and at section (2) are 300 kPa and 1
steposvetlana [31]

Answer:

The velocity at section is approximately 42.2 m/s

Explanation:

For the water flowing through the pipe, we have;

The pressure at section (1), P₁ = 300 kPa

The pressure at section (2), P₂ = 100 kPa

The diameter at section (1), D₁ = 0.1 m

The height of section (1) above section (2), D₂ = 50 m

The velocity at section (1), v₁ = 20 m/s

Let 'v₂' represent the velocity at section (2)

According to Bernoulli's equation, we have;

z_1 + \dfrac{P_1}{\rho \cdot g} + \dfrac{v^2_1}{2 \cdot g} = z_2 + \dfrac{P_2}{\rho \cdot g} + \dfrac{v^2_2}{2 \cdot g}

Where;

ρ = The density of water = 997 kg/m³

g = The acceleration due to gravity = 9.8 m/s²

z₁ = 50 m

z₂ = The reference = 0 m

By plugging in the values, we have;

50 \, m + \dfrac{300 \ kPa}{997 \, kg/m^3 \times 9.8 \, m/s^2} + \dfrac{(20 \, m/s)^2}{2 \times 9.8 \, m/s^2} = \dfrac{100 \ kPa}{997 \, kg/m^3 \times 9.8 \, m/s^2} + \dfrac{v_2^2}{2 \times 9.8 \, m/s^2}50 m + 30.704358 m + 20.4081633 m = 10.234786 m + \dfrac{v_2^2}{2 \times 9.8 \, m/s^2}

50 m + 30.704358 m + 20.4081633 m - 10.234786 m = \dfrac{v_2^2}{2 \times 9.8 \, m/s^2}

90.8777353 m = \dfrac{v_2^2}{2 \times 9.8 \, m/s^2}

v₂² = 2 × 9.8 m/s² × 90.8777353 m

v₂² = 1,781.20361 m²/s²

v₂ = √(1,781.20361 m²/s²) ≈ 42.204308 m/s

The velocity at section (2), v₂ ≈ 42.2 m/s

3 0
2 years ago
A fatigue test was conducted in which the mean stress was 46.2 MPa and the stress amplitude was 219 MPa.
sleet_krkn [62]

Answer:

a)σ₁ = 265.2 MPa

b)σ₂ = -172.8 MPa

c)Stress\ ratio =-0.65

d)Range = 438 MPa

Explanation:

Given that

Mean stress ,σm= 46.2 MPa

Stress amplitude ,σa= 219 MPa

Lets take

Maximum stress level = σ₁

Minimum stress level =σ₂

The mean stress given as

\sigma_m=\dfrac{\sigma_1+\sigma_2}{2}

2\sigma_m={\sigma_1+\sigma_2}

2 x 46.2 =  σ₁ +  σ₂

 σ₁ +  σ₂ = 92.4 MPa    --------1

The amplitude stress given as

\sigma_a=\dfrac{\sigma_1-\sigma_2}{2}

2\sigma_a={\sigma_1-\sigma_2}

2 x 219 =  σ₁ -  σ₂

 σ₁ -  σ₂ = 438 MPa    --------2

By adding the above equation

2  σ₁ = 530.4

σ₁ = 265.2 MPa

-σ₂ = 438 -265.2 MPa

σ₂ = -172.8 MPa

Stress ratio

Stress\ ratio =\dfrac{\sigma_{min}}{\sigma_{max}}

Stress\ ratio =\dfrac{-172.8}{265.2}

Stress\ ratio =-0.65

Range = 265.2 MPa - ( -172.8 MPa)

Range = 438 MPa

8 0
3 years ago
The nuclear reactions resulting from thermal neutron absorption in boron and cadmium are 10B5 + 1 n0 ï  7Li3 + 4He2 113Cd48 + 1
kirill115 [55]

Solution :

The nuclear reaction for boron is given as :

$^{10}\textrm{B}_5 + ^{1}\textrm{n}_0 \rightarrow ^{7}\textrm{Li}_3 + ^{4}\textrm{He}_2$

And the reaction for Cadmium is :

$^{113}\textrm{Cd}_48 + ^{1}\textrm{n}_0 \rightarrow ^{114}\textrm{Cd}_48 + \gamma [5 \ \textrm{MeV}]$

We know that it is easier that to shield or stop an alpha particle (i.e. He nucli) as they can be stopped or obstructed by only a few centimetres of the material. However, the gamma rays ( γ ) can penetrate through the material to a greater distance. Therefore, we can choose the first one.

6 0
2 years ago
U 4. Find 2 bridges in the US and answer the following:
Zarrin [17]

Answer:

Im guessing this is for CEA for PLTW, if so look up the exact assignment number and look at online examples of the exact same assignment.

Explanation:

6 0
3 years ago
What is the instantaneous center of zero velocity? List two approaches for determining the is the instantaneous center of zero v
Lera25 [3.4K]

Explanation:

Instantaneous center:

   It is the center about a body moves in planer motion.The velocity of Instantaneous center is zero and Instantaneous center can be lie out side or inside the body.About this center every particle of a body rotates.

From the diagram

Where these two lines will cut then it will the I-Center.Point A and B is moving perpendicular to the point I.

If we take three link link1,link2 and link3 then I center of these three link will be in one straight line It means that they will be co-linear.

I_{12},I_{23},I_{31} all\ are\ co-linear.

5 0
3 years ago
Other questions:
  • Vending machine controller (adapted from Katz, "Contemporary Logic Design") Design and implement a finite state machine that con
    10·1 answer
  • A common rule of thumb for controller discretization is to have "6 samples per rise time" in order to achieve a reasonable appro
    9·1 answer
  • Cold water (cp = 4180 J/kg·K) leading to a shower enters a thin-walled double-pipe counterflow heat exchanger at 15°C at a rate
    11·1 answer
  • The crash rate per mile is.
    15·1 answer
  • A 200-gr (7000 gr = 1 lb) bullet goes from rest to 3300 ft/s in 0.0011 s. Determine the magnitude of the impulse imparted to the
    10·1 answer
  • For a very rough pipe wall the friction factor is constant at high Reynolds numbers. For a length L1 the pressure drop over the
    9·1 answer
  • Please help me with this. Picture
    10·1 answer
  • A rectangular bar has a edge crack at the bottom and is subjected to a pure bending moment. The crack length is a = 1 mm. The he
    14·1 answer
  • A 360 kg/min stream of steam enters a turbine at 40 bar pressure and 100 degrees of superheat. The steam exits the turbine as a
    14·1 answer
  • Consider the function f(n) = n
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!