1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kiruha [24]
3 years ago
6

The outer surface of an engine is situated in a place where oil leakage can occur. When leaked oil comes in contact with ahot su

rface that has a temperature above its autoignition temperature. the oil can ignite spontaneously. Consider anengine cover that is made of a stainless steel plate with a thickness of 1 cm and a thermal conductivity of 14 W/m-K Theinner surface of the engine cover is exposed to hot air with a convection heat transfer coefficient of 7 W/m2-K at 333°C.The outer surface is exposed to an environment where the ambient air is 69‘C with a convection heat transfer coefficientof 7 W/mZ-K To prevent fire hazard in the event of oil leak on the engine cover, a layer of thermal barrier coating (T BC)with a thermal conductivity of 11 W/m-K is applied on the engine cover outer surface. Would a TBC layer of 4 mm inthickness be sufficient to keep the engine cover surface below autoignition temperature of 200T to prevent fire hazard?

Engineering
1 answer:
VladimirAG [237]3 years ago
3 0

Answer:

TBC thickness of 4 mm is insufficient to prevent fire hazard

Explanation:

Given:

- Temperature of hot-fluid inner surface T_i = 333°C

- The convection coefficient hot-fluid h_i = 7 W/m^2K

- The thermal conductivity of engine cover k_1 = 14 W/mK

- The thickness of engine cover L_1 = 0.01 m

- The thermal conductivity of TBC layer k_2 = 1.1 W/mK  ... (Typing error)

- The thickness of TBC layer L_2 = 0.004 m

- Temperature of ambient air outer surface T_o = 69°C

- The convection coefficient ambient air h_o = 7 W/m^2K

Find:

Would a TBC layer of 4 mm thickness be sufficient to keep the engine cover surface below autoignition temperature of 200°C to prevent fire hazard?

Solution:

- We will use thermal circuit analogy for the 1-D problem and steady state conduction with no heat generation in the cover or TBC layer.

 The temperature at each medium interface and the Thermal resistance for each medium is given in the attachment schematic and circuit analogy.

 - We will calculate the total heat flux for the entire system q:

                       q = ( T_i - T_o ) / R_total

- R_total is the equivalent thermal resistance of the entire circuit. Since all resistances are in series we have:

                       R_total = 1 / h_i + L_1 / k_1 + L_2 / k_2 + 1 / h_o

- Plug in the values and compute:

                       R_total = 1 / 7 + 0.01 / 14 + 0.004 / 1.1 + 1 / 7

                       R_total = 0.2900649351 T-m^2 / W

- Calculate the Total heat flux q:

                       q = ( 333 - 69 ) / 0.2900649351

                       q = 910.141 W / m^2

- Just like the total current in a circuit remains same, the total heat flux remains same. We will use the total heat flux q to calculate the temperature of outer engine surface T_2 as follows:

                      q = ( T_i - T_2 ) / R_i2

Where,

                      R_i2 = 1 / h_i + L_1 / k_1

                      R_i2 = 1 / 7 + 0.01 / 14 = 0.14357 T-m^2 / W

Hence,

                      ( T_i - T_2 ) = q*R_i2

                        T_2 = T_i - q*R_i2

Plug the values in:

                        T_2 = 333 - 910.141*0.14357

                        T_2 = 202.33°C

- The outer surface of the engine cover has a temperature above T_ignition = 200°C. Hence, the TBC thickness of 4 mm is insufficient to prevent fire hazard

You might be interested in
Q7. A cylindrical rod of 1040 steel originally 15.2 mm (0.60 in.) in diameter is to be cold worked by drawing; the circular cros
umka2103 [35]

Answer:

11.2mm or 0.45in

Explanation:

The percent cold work, attendant tensile strength and ductility if drawing is carried out without interruption is given by the equation you will find in the attached file.

Please go through the attached file for a step by step solution to this question.

5 0
3 years ago
A single-phase transformer circuit feeds a motor and lighting load of 50 kilowatts. At a power factor of .8, the KVA rating of t
AveGali [126]

The KVA rating of the step down transformer at the given power factor would be 62.5 kVA.

<h3>What is power factor of a transformer?</h3>

Power factor (PF) is the ratio of working power, measured in kilowatts (kW), to apparent power, measured in kilovolt amperes (kVA).

PF = working power / apparent power

PF =  kW/kVA

kVA = kW/PF

kVA = 50 kW/0.8

kVA = 62.5 kVA

Thus, the KVA rating of the step down transformer at the given power factor would be 62.5 kVA.

Learn more about power factor here: brainly.com/question/7956945

#SPJ1

3 0
2 years ago
A 50 mm diameter shaft is subjected to a static axial load of 160 kN. If the yield stress of the material is 350 MPa, the ultima
zvonat [6]

In order to develop this problem it is necessary to take into account the concepts related to fatigue and compression effort and Goodman equation, i.e, an equation that can be used to quantify the interaction of mean and alternating stresses on the fatigue life of a materia.

With the given data we can proceed to calculate the compression stress:

\sigma_c = \frac{P}{A}

\sigma_c = \frac{160*10^3}{\pi/4*0.05^2}

\sigma_c = 81.5MPa

Through Goodman's equations the combined effort by fatigue and compression is expressed as:

\frac{\sigma_a}{S_e}+\frac{\sigma_c}{\sigma_u}=\frac{1}{Fs}

Where,

\sigma_a=Fatigue limit for comined alternating and mean stress

S_e =Fatigue Limit

\sigma_c=Mean stress (due to static load)

\sigma_u = Ultimate tensile stress

Fs =Security Factor

We can replace the values and assume a security factor of 1, then

\frac{\sigma_a}{320}+\frac{81.5}{400}=\frac{1}{1}

Re-arrenge for \sigma_a

\sigma_a = 254.8Mpa

We know that the stress is representing as,

\sigma_a = \frac{M_c}{I}

Then,

Where M_c=Max Moment

I= Intertia

The inertia for this object is

I=\frac{\pi d^4}{64}

Then replacing and re-arrenge for M_c

M_c = \frac{\sigma_a*\pi*d^3}{32}

M_c = \frac{260.9*10^6*\pi*0.05^3}{32}

M_c = 3201.7N.m

Thereforethe moment that can be applied to this shaft so that fatigue does not occur is 3.2kNm

5 0
3 years ago
If the tank is designed to withstand a pressure of 5 MPaMPa, determine the required minimum wall thickness to the nearest millim
dmitriy555 [2]

Answer: hello some aspects of your question is missing below is the missing information

The gas tank is made from A-36 steel and has an inner diameter of 1.50 m.

answer:

≈ 22.5 mm

Explanation:

Given data:

Inner diameter = 1.5 m

pressure = 5 MPa

factor of safety = 1.5

<u>Calculate the required minimum wall thickness</u>

maximum-shear-stress theory ( σ allow ) = σγ / FS

                                                  = 250(10)^6 / 1.5  = 166.67 (10^6) Pa

given that |σ| = σ allow  

3.75 (10^6) / t = 166.67 (10^6)

∴ t ( wall thickness ) = 0.0225 m   ≈ 22.5 mm

4 0
2 years ago
For a bronze alloy, the stress at which plastic deformation begins is 275 MPa, and the modulus of elasticity is 115 GPa. (a) Wha
Anton [14]

Answer:

89375 N

Explanation:

Rearrange the formula for normal stress for F:

\sigma=\frac{F}{A}

F=\sigma*A

Convert given values to base units:

275 MPa = 275*10^{6} Pa

325 mm^{2} = 0.000325 m^{2}

Substituting in given values:

F = (275*10^{6})*(0.000325)=89375 N

3 0
2 years ago
Other questions:
  • A 3-kg block rests on top of a 2-kg block supported by, but not attached to, a spring of constant 40 N/m. The upper block is sud
    14·2 answers
  • Two infinite extent current sheets exist at z = −3.0 m and at z = +3.0 m. The top sheet has a uniform current
    11·1 answer
  • Explain in detail the difference between the microstructures of a cold worked sample and Recrystallized sample ?
    15·1 answer
  • What is the governing ratio for thin walled cylinders?
    6·1 answer
  • A cylindrical tank is required to contain a gage pressure 560 kPa . The tank is to be made of A516 grade 60 steel with a maximum
    8·1 answer
  • You start your car and begin to pull out of a parking space. After leaving the space, You notice that the brake light on your in
    12·1 answer
  • 5) Calculate the LMC wal thickness of a pipe and tubing with OD as 35 + .05 and ID as 25 + .05 A) 4.95 B) 5.05 C) 10 D) 15.025
    11·2 answers
  • Cómo se llama el componente, que permite abrir o cerrar un circuito eléctrico
    8·1 answer
  • Tony works as a Sorter in a processing factory. Which qualifications does he most likely have?
    10·2 answers
  • Fluid systems can distribute pressure unequally to all points in a system.<br><br> True<br> False
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!