The copper and oxygen and oxygen atoms are not ions, and the bonds are more covalent than they are ionic.
Given Information:
Pendulum 1 mass = m₁ = 0.2 kg
Pendulum 2 mass = m₂ = 0.6 kg
Pendulum 1 length = L₁ = 5 m
Pendulum 2 length = L₂ = 1 m
Required Information:
Affect of mass on the frequency of the pendulum = ?
Answer:
The mass of the ball will not affect the frequency of the pendulum.
Explanation:
The relation between period and frequency of pendulum is given by
f = 1/T
The period of pendulum is given by
T = 2π√(L/g)
Where g is the acceleration due to gravity and L is the length of the string
As you can see the period (and frequency too) of pendulum is independent of the mass of the pendulum. Therefore, the mass of the ball will not affect the frequency of the pendulum.
Bonus:
Pendulum 1:
T₁ = 2π√(L₁/g)
T₁ = 2π√(5/9.8)
T₁ = 4.49 s
f₁ = 1/T₁
f₁ = 1/4.49
f₁ = 0.22 Hz
Pendulum 2:
T₂ = 2π√(L₂/g)
T₂ = 2π√(1/9.8)
T₂ = 2.0 s
f₂ = 1/T₂
f₂ = 1/2.0
f₂ = 0.5 Hz
So we can conclude that the higher length of the string increases the period of the pendulum and decreases the frequency of the pendulum.
Answer:
a
Explanation:
I think its a its speed increases.....
Electron configurations:
Ge: [Ar] 3d10 4s2 4p2 => 6 electrons in the outer shell
Br: [Ar] 3d10 4s2 4p5 => 7 electrons in the outer shell
Kr: [Ar] 3d10 4s2 4p6 => 8 electrons in the outer shell
The electron affinity or propension to attract electrons is given by the electronic configuration. Remember that the most stable configuration is that were the last shell is full, i.e. it has 8 electrons.
The closer an atom is to reach the 8 electrons in the outer shell the bigger the electron affinity.
Of the three elements, Br needs only 1 electron to have 8 electrons in the outer shell, so it has the biggest electron affinity (the least negative).
Ge: needs 2 electrons to have 8 electrons in the outer shell, so it has a smaller (more negative) electron affinity than Br.
Kr, which is a noble gas, has 8 electrons and is not willing to attract more electrons at all, the it has the lowest (more negative) electron affinity of all three to the extension that really the ion is so unstable that it does not make sense to talk about a number for the electron affinity of this atom.