Answer:
Zn =⇒ Zn+2(0.10) + 2e- (anode)
Zn+2(?M) + 2e- === Zn(s) (cathode)
Zn + Zn+2(?M) ===⇒ Zn+2(0.10) + Zn
E = E^o -0.0592 log Q; in this case E^o is zero.
E = - 0.0592 /n logQ where n is the number of electrons transferred, in this
case n = 2
23 mV x 1 volt/1000mv = 0.023 Volts
0.023 = -0.0592 / 2 log(0.10) / [Zn+2]
0.023 = -0.0296 { log 0.10 – log [Zn+2] }
0.023 = -0.0296{ -1 - log[Zn+2] }
0.023 = +0.0296 + 0.0296log[Zn+2]
-0.0066 = 0.0296log[Zn+2]
-0.22= log[Zn+2]
[Zn+2] = 10^-0.22 = 0.603 Molar
Answer:
2.25 g
Explanation:
The mass of the solid X must be the total mass (beaker + solid X) less than the mass of the beaker. Then:
mass of the solid X = 34.40 - 32.15
mass of the solid X = 2.25 g
The difference of 0.25 g must occur for several problems: an incorrect weight in the balance, the configuration of the balance, the solid can be hydrophilic and absorbs water, and others.
Answer:
mercury( specific heat=0.140j/gc)
<span>D. all of the above because ionic compound is a salt. it is also held together by ionic bonds. it has anions and cations </span>
H2SO.Mgslfurmobile phase in this experiment