Answer: A & D
Explanation:
The two main forces are temperature and salinity.
<u>Given:</u>
Concentration of HNO3 = 7.50 M
% dissociation of HNO3 = 33%
<u>To determine:</u>
The Ka of HNO3
<u>Explanation:</u>
Based on the given data
[H+] = [NO3-] = 33%[HNO3] = 0.33*7.50 = 2.48 M
The dissociation equilibrium is-
HNO3 ↔ H+ + NO3-
I 7.50 0 0
C -2.48 +2.48 +2.48
E 5.02 2.48 2.48
Ka = [H+][NO3-]/HNO3 = (2.48)²/5.02 = 1.23
Ans: Ka for HNO3 = 1.23
1. Ca(HCO3)2
2.Ca(HCOO)2
3. Ca(OH)2
4.NaOH
5.KCI
6.MgSO4
7.PbO
8.HCl
9.HNO3
10.H2SO4
11.NH3
12.(NH4)3PO4
13.NaOH
:)
Answer:
11.39
Explanation:
Given that:


Given that:
Mass = 1.805 g
Molar mass = 82.0343 g/mol
The formula for the calculation of moles is shown below:

Thus,


Given Volume = 55 mL = 0.055 L ( 1 mL = 0.001 L)


Concentration = 0.4 M
Consider the ICE take for the dissociation of the base as:
B + H₂O ⇄ BH⁺ + OH⁻
At t=0 0.4 - -
At t =equilibrium (0.4-x) x x
The expression for dissociation constant is:
![K_{b}=\frac {\left [ BH^{+} \right ]\left [ {OH}^- \right ]}{[B]}](https://tex.z-dn.net/?f=K_%7Bb%7D%3D%5Cfrac%20%7B%5Cleft%20%5B%20BH%5E%7B%2B%7D%20%5Cright%20%5D%5Cleft%20%5B%20%7BOH%7D%5E-%20%5Cright%20%5D%7D%7B%5BB%5D%7D)

x is very small, so (0.4 - x) ≅ 0.4
Solving for x, we get:
x = 2.4606×10⁻³ M
pOH = -log[OH⁻] = -log(2.4606×10⁻³) = 2.61
<u>pH = 14 - pOH = 14 - 2.61 = 11.39</u>