The pH = 2.41
<h3>Further explanation</h3>
Given
5.0% by mass solution of acetic acid
the density of white vinegar is 1.007 g/cm3
Required
pH
Solution
Molarity of solution :

Ka for acetic acid = 1.8 x 10⁻⁵
[H⁺] for weak acid :
![\tt [H^+]=\sqrt{Ka.M}](https://tex.z-dn.net/?f=%5Ctt%20%5BH%5E%2B%5D%3D%5Csqrt%7BKa.M%7D)
Input the value :
![\tt [H^+]=\sqrt{1.8\times 10^{-5}\times 0.839}\\\\(H^+]=0.00388=3.88\times 10^{-3}\\\\pH=3-log~3.88=2.41](https://tex.z-dn.net/?f=%5Ctt%20%5BH%5E%2B%5D%3D%5Csqrt%7B1.8%5Ctimes%2010%5E%7B-5%7D%5Ctimes%200.839%7D%5C%5C%5C%5C%28H%5E%2B%5D%3D0.00388%3D3.88%5Ctimes%2010%5E%7B-3%7D%5C%5C%5C%5CpH%3D3-log~3.88%3D2.41)
Answer: it would be b time taken by the glass surface to dry
Explanation:
i had took the test and i got it right
They are called isotopes.
Example of isotopes are Hydrogen and deuterium.
Hydrogen is 1 proton and 0 neutrons.
Deuterium is 1 proton and 1 neutron
Answer:
Answer:
The mole ratio of C₄H₁₀ and CO₂ is 2 : 8, which simplifies to 1 : 4.
Explanation:
The mole ratio is the relative proportion of the moles of products or reactants that participate in the reaction according to the chemical equation.
The chemical equation given is:
2C₄H₁₀ + 13O₂ → 8CO₂ + 10H₂O
Once you check that the equation is balanced, you can set the mole ratios for all the reactants and products. The coefficients used in front of each reactant and product, in the balanced chemical equation, tells the mole ratios.
In this case, they are: 2 mol C₄H₁₀ : 13 mol O₂ : 8 mol CO₂ : 10 mol H₂O
Since you are asked about the mole ratio of C₄H₁₀ and CO₂ it is:
2 mol C₄H₁₀ : 8 mol CO₂ , which dividing by 2, simplifies to
1 mol C₄H₁₀ : 4 mol CO₂, or
1 : 2.
Explanation:
Answer:
The value of the equilibrium constant for reaction asked is
.
Explanation:


![K_{goal}=\frac{[C][O_2]}{[CO_2]}](https://tex.z-dn.net/?f=K_%7Bgoal%7D%3D%5Cfrac%7B%5BC%5D%5BO_2%5D%7D%7B%5BCO_2%5D%7D)
..[1]
![K_1=\frac{[CH_3COOH][O_2]^2}{[CO_2]^2[H_2O]^2}](https://tex.z-dn.net/?f=K_1%3D%5Cfrac%7B%5BCH_3COOH%5D%5BO_2%5D%5E2%7D%7B%5BCO_2%5D%5E2%5BH_2O%5D%5E2%7D)
..[2]
![K_2=\frac{[H_2O]^2}{[H_2]^2[O_2]}](https://tex.z-dn.net/?f=K_2%3D%5Cfrac%7B%5BH_2O%5D%5E2%7D%7B%5BH_2%5D%5E2%5BO_2%5D%7D)
..[3]
![K_3=\frac{[C]^2[H_2]^2[O_2]}{[CH_3COOH]}](https://tex.z-dn.net/?f=K_3%3D%5Cfrac%7B%5BC%5D%5E2%5BH_2%5D%5E2%5BO_2%5D%7D%7B%5BCH_3COOH%5D%7D)
[1] + [2] + [3]

( on adding the equilibrium constant will get multiplied with each other)



![K=\frac{[C]^2[O_2]^2}{[CO_2]^2}](https://tex.z-dn.net/?f=K%3D%5Cfrac%7B%5BC%5D%5E2%5BO_2%5D%5E2%7D%7B%5BCO_2%5D%5E2%7D)
On comparing the K and
:


The value of the equilibrium constant for reaction asked is
.