Refraction as in a pencil going into water
Answer:
66.375 x 10⁻⁶ C/m
Explanation:
Using Gauss's law which states that the net electric flux (∅) through a closed surface is the ratio of the enclosed charge (Q) to the permittivity (ε₀) of the medium. This can be represented as
;
∅ = Q / ε₀ -----------------(i)
Where;
∅ = 7.5 x 10⁵ Nm²/C
ε₀ = permittivity of free space (which is air, since it is enclosed in a bag) = 8.85 x 10⁻¹² Nm²/C²
Now, let's first get the charge (Q) by substituting the values above into equation (i) as follows;
7.5 x 10⁵ = Q / (8.85 x 10⁻¹²)
Solve for Q;
Q = 7.5 x 10⁵ x 8.85 x 10⁻¹²
Q = 66.375 x 10⁻⁷ C
Now, we can find the linear charge density (L) which is the ratio of the charge(Q) to the length (l) of the rod. i.e
L = Q / l ----------------------(ii)
Where;
Q = 66.375 x 10⁻⁷ C
l = length of the rod = 10.0cm = 0.1m
Substitute these values into equation (ii) as follows;
L = 66.375 x 10⁻⁷C / 0.1m
L = 66.375 x 10⁻⁶ C/m
Therefore, the linear charge density (charge per unit length) on the rod is 66.375 x 10⁻⁶ C/m.
Answer: Lightning is mostly light and electricity, this light that is hitting is going at a rate of 299,792.458 km per second (or 186,282 miles per second) this is so much compared to sound which only travels at about 761 mph (or approximately 332 meters per second). Fun fact: The lightening you are seeing is that coming back to the cloud because the process happens so fast.
Explanation:
Answer:
The potential difference between the plates is 
Explanation:
Given that,
Distance = 1.4 mm
Electric field strength 
Let the potential difference is V.
We need to calculate the potential difference between the plates
Using formula of electric field


Where, V = potential
d = distance
Put the value into the formula


Hence, The potential difference between the plates is 
We have volume of gasoline = 14.0 gallon
Time taken to fill automobile tank = 1.50 minutes
So volume rate = 14.0 gallon/1.50 minutes = 9.33 gallon/ minute
We have density of gasoline = 0.77 kg/L = 6.073 lb/US gal
Mass rate = Density * Volume rate
= 9.33 gallon/ minute*6.073 lb/US gal = 56.68 lb/min
So mass flow rate delivered by the gasoline pump in lbm/min = 56.68