To solve this problem we will apply the concepts related to equilibrium, for this specific case, through the sum of torques.

If the distance in which the 600lb are applied is 6in, we will have to add the unknown Force sum, at a distance of 27in - 6in will be equivalent to that required to move the object. So,



So, Force that must be applied at the long end in order to lift a 600lb object to the short end is 171.42lb
Answer:
When in free fall, the only force acting upon your body is the force of gravity - a non-contact force. Since the force of gravity cannot be felt without any other opposing forces, you would have no sensation of it. You would feel weightless when in a state of free fall.
6. Since we are not sure if the person in the question is actively lifting the crate, we have to determine the downwards force of the crate due to gravity and compare it to the normal force.
F = ma
F = (15.3)(-9.8)
F = -150N
Since the downwards force of the crate is equivalent to the normal force, it means the person is applying no force in picking up the object. So to pick up a 150N object from scratch, you would have to exert more force than the weight of the object, so the answer is 294N.
7. Same idea as question 2.
First determine the weight of the object:
F = ma
F = (30)(-9.8)
F = -294N
The crate in question is not moving, so the magnitudes of the forces in the upwards and downwards direction has to equal to 0.
-294 + 150N + x = 0
x = 144N
So the person is exerting 144 N.
10. First find the force of block B to the right due to its acceleration:
F = ma
F = (24)(0.5)
F = 12N
So block B is moving 12N to the right relative to block A due to block A's movement to the left. However, block A is being applied a much greater force and is moving quicker to the left than block B is moving to the right of bock A. The force that is causing block B to experience the lower relative force to the right is because of the friction. To find the friction:
The sum of the forces in the leftward and rightward direction for block B must equal 12N.
75 - x = 12
x = 63N
So the force of friction of block A on block B is 63N to the left.
The age of a man whose normal blood pressure measures 123 mm of hg
9 years
<h3>What is Quadratic equation ?</h3>
A quadratic equation as an equation of degree 2, meaning that the highest exponent of this function is 2. The standard form of a quadratic equation is y = a
+ bx + c, where a, b, and c are numbers and a cannot be 0
P(A) = 0.006
- 0.02a + 120
123 = 0.006- 0.02a + 120
0=0.006
- 0.02a - 3
you can use the quadratic equation formula to solve for the man's age.
A = (-b ± (
) ) / (2a)
A = (0.02 ±
/ (2*0.006)
A = (0.02 ±
) / 0.012
A = 9 , -5.67
Age of the man will be 9 years
To learn more about quadratic equation here
brainly.com/question/17177510?referrer=searchResults
#SPJ4