Answer:
C. Momentum is conserved but not kinetic energy.
Explanation:
This case represents an entirely inelastic collision, that is, a collision between the car and the truck that reduces total kinetic energy of the entire system, whereas linear momentum is conserved. Hence, correct answer is C.
Answer: 20.2 m/s
Explanation:
From the question above, we have the following data;
M1 = 800kg
M2 = 1200kg
V1 = 13m/s
V2 = 25m/s
U (common velocity) =?
M1V1 + M2V2 = (M1 + M2). U
(800*13) + (1200*25) = (800+1200) * U
10400 + 30000 = 2000u
40400 = 2000u
U = 40400 / 2000
U = 20.2 m/s
Answer:
R = 1.2295 10⁵ m
Explanation:
After reading your problem they give us the diameter of the lens d = 4.50 cm = 0.0450 m, therefore if we use the Rayleigh criterion for the resolution in the diffraction phenomenon, we have that the minimum separation occurs in the first minimum of diffraction of one of the bodies m = 1 coincides with the central maximum of the other body
θ = 1.22 λ / D
where the constant 1.22 leaves the resolution in polar coordinates and D is the lens aperture
how angles are measured in radians
θ = y / R
where y is the separation of the two bodies (bulbs) y = 2 m and R the distance from the bulbs to the lens
R =
let's calculate
R =
R = 1.2295 10⁵ m
Answer:
1900 meters
Explanation:
30m/s x 30 second = 900 meters
+ 1000 meters starting position
= 1900meters
A -..................................is the correct option