Answer:
The velocity of the gun relative to the ground is 19.66 m/s
Explanation:
Given data,
The mass of the gun, M = 15.0 kg
The mass of the bullet, m = 50 g
The velocity of the train, v = 75 km/h
= 20.83 m/s
The velocity of bullet relative to train, V' = 350 m/s
The velocity of bullet relative to ground, V = 350 + 20
= 370 m/s
According to the law of conservation of momentum,
Mv' + mV' = 0
= -1.17 m/s
Therefore, the velocity of the gun with,
v₀ = V + v'
= 20.83 - 1.17
= 19.66 m/s
Hence, the velocity of the gun relative to the ground is 19.66 m/s
The distance covered by the body is 114.3 m
Explanation:
The work done by a force exerted on an object is given by
where
F is the magnitude of the force
d is the displacement of the object
is the angle between the direction of the force and of the displacement
For the object in this problem, we have
F = 350 N is the force applied
is the work done
if we assume that the force is applied parallel to the motion of the object
Solving for d, we find the distance covered by the object:
Learn more about work:
brainly.com/question/6763771
brainly.com/question/6443626
#LearnwithBrainly
This is just testing your ability to recall that kinetic energy is given by:
<span>k.e. = ½mv² </span>
<span>where m is the mass and v is the velocity of the particle. </span>
<span>The frequency of the light is redundant information. </span>
<span>Here, you are given m = 9.1 * 10^-31 kg and v = 7.00 * 10^5 m/s. </span>
<span>Just plug in the values: </span>
<span>k.e. = ½ * 9.1 * 10^-31 * (7.00 * 10^5)² </span>
<span>k.e. = 2.23 * 10^-19 J
so it will be d:2.2*10^-19 J</span>
Answer:
cone geyser
Explanation:
The Old Faithful geyser is the oldest discovered geyser in the Yellowstone national park. The eruptions of the geyser are particularly predictable. It is a cone type geyser.
Cone geysers generally have a spout through which the water ejects out. When super heated water in the tube then the water starts to boil and form bubbles of steam, after this process the eruption takes place.
when the ball hits the floor and bounces back the momentum of the ball changes.
the rate of change of momentum is the force exerted by the floor on it.
the equation for the force exerted is
f = rate of change of momentum
v is the final velocity which is - 3.85 m/s
u is initial velocity - 4.23 m/s
m = 0.622 kg
time is the impact time of the ball in contact with the floor - 0.0266 s
substituting the values
since the ball is going down, we take that as negative and ball going upwards as positive.
f = 189 N
the force exerted from the floor is 189 N