The hot gases produce their own characteristic pattern of spectral lines, which remain fixed as the temperature increases moderately.
<h3><u>Explanation: </u></h3>
A continuous light spectrum emitted by excited atoms of a hot gas with dark spaces in between due to scattered light of specific wavelengths is termed as an atomic spectrum. A hot gas has excited electrons and produces an emission spectrum; the scattered light forming dark bands are called spectral lines.
Fraunhofer closely observed sunlight by expanding the spectrum and a huge number of dark spectral lines were seen. "Robert Bunsen and Gustav Kirchhoff" discovered that when certain chemicals were burnt using a Bunsen burner, atomic spectra with spectral lines were seen. Atomic spectral pattern is thus a unique characteristic of any gas and can be used to independently identify presence of elements.
The spectrum change does not depend greatly on increasing temperatures and hence no significant change is observed in the emitted spectrum with moderate increase in temperature.
Yes, a test could be performed to support the claim.
Hypothesis: The claim that a manufacturer’s cleanser works
twice as fast as any other cleanser.
So, based from this hypothesis, we can perform the following
tests:
We assign Cleanser A to the manufacturer that claims that their cleanser works
twice as fast as any other cleanser and Cleanser B to the cleanser to be
compared with.
1.
Get two tiles and put the same amount of stain
on them.
2.
Apply Cleanser A on the first tile and Cleanser
B on the second tile.
3.
Apply the same amount of force in removing the
stains on both tiles
4.
Record the amount of time it takes to remove the
stains on each tile.
Answer:
pahingi po ng pic pls para masagutang kopo iyan