Answer:
-4
Explanation:
PLz give me brainliest I worked hard thank u
Sodium hydroxide solution and hydrogen gas are produced from the reaction of water and sodium.
<h2>Reaction of sodium and water</h2>
We observe bubbles coming out of the water when the sodium reacts with the water because of the formation of hydrogen gas which is insoluble in water so it moves into the atmosphere.
<h3>Products of the reaction</h3>
Sodium metal reacts rapidly with water to form sodium hydroxide (NaOH) solution and hydrogen gas (H2). This chemical reaction is exothermic because huge amount of heat is release from the solution so we can conclude that sodium hydroxide solution and hydrogen gas are produced from the reaction of water and sodium.
Learn more about chemical reaction here: brainly.com/question/26018275
Learn more: brainly.com/question/26167984
Answer : The internal energy change is -2805.8 kJ/mol
Explanation :
First we have to calculate the heat gained by the calorimeter.

where,
q = heat gained = ?
c = specific heat = 
= final temperature = 
= initial temperature = 
Now put all the given values in the above formula, we get:


Now we have to calculate the enthalpy change during the reaction.

where,
= enthalpy change = ?
q = heat gained = 23.4 kJ
n = number of moles fructose = 

Therefore, the enthalpy change during the reaction is -2805.8 kJ/mole
Now we have to calculate the internal energy change for the combustion of 1.501 g of fructose.
Formula used :

or,

where,
= change in enthalpy = 
= change in internal energy = ?
= change in moles = 0 (from the reaction)
R = gas constant = 8.314 J/mol.K
T = temperature = 
Now put all the given values in the above formula, we get:




Therefore, the internal energy change is -2805.8 kJ/mol
Answer: X3+
Explanation:
Every atom aim to achieve stability by receiving electrons or giving their valence electrons in order to have a complete outermost shell of 2 (duplet) or 8 (octet structure).
In this case, the atom X will easily give off its three valence electrons to another atom(s), thereby forming a trivalent positive ion (X3+) with a stable duplet or octet structure (i.e an outermost shell with 2 or 8 electrons).
X --> X3+ + 3e-
Thus, due to the give away of three electrons (3e-), the atom X becomes X3+.
Answer:
The correct option is: Br₂--------->2 Br(g)
Explanation:
Bond dissociation is a process in which energy is applied to break a chemical bond between the atoms of a molecule to give free atoms.
In the given reaction: Br₂-------->2 Br(g)
The covalent bond in Br₂ molecule dissociates to give two moles of bromine atoms. Therefore, it is a bond dissociation reaction.