Answer: Option (5) is the correct answer.
Explanation:
It is known that the ground state electronic configuration of silicon is
.
And, we know that when an atom tends to gain an electron then it acquires a negative charge and when an atom tends to lose an electron then it acquires a positive charge.
As
has a +4 charge which means that it has lost 4 electrons. Hence, the electronic configuration of
is
.
According to the Aufbau principle, in the ground state of an atom or ion the electrons fill atomic orbitals of the lowest energy levels first, before filling the higher energy levels.
As 2p orbital is filled after the filling of 2s orbital.
Therefore, we can conclude that 2p orbital will be occupied by the electrons of highest energy for the
ground-state ion.
Answer:
V₂ = 5.97 L
Explanation:
Given data:
Initial temperature = 9°C (9+273 = 282 K)
Initial volume of gas = 6.17 L
Final volume of gas = ?
Final temperature = standard = 273 K
Solution:
Formula:
The Charles Law will be apply to solve the given problem.
According to this law, 'the volume of given amount of a gas is directly proportional to its temperature at constant number of moles and pressure'
Mathematical expression:
V₁/T₁ = V₂/T₂
V₁ = Initial volume
T₁ = Initial temperature
V₂ = Final volume
T₂ = Final temperature
Now we will put the values in formula.
V₁/T₁ = V₂/T₂
V₂ = V₁T₂/T₁
V₂ = 6.17 L × 273K / 282 k
V₂ = 1684.41 L.K / 282 K
V₂ = 5.97 L
Answer:
Option 4 with o-h in the most polar bond, since the two atoms in the bond have the greatest difference in electronegativity. This is assuming there are no other factors in other atoms bound to either of the elements in the bond.
Explanation:
<h3>
Answer:</h3>
3.03 × 10²⁵ formula units KCl
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Unit 0</u>
- Reading a Periodic Table
- Writing Compounds
<u>Atomic Structure</u>
- Using Dimensional Analysis
- Avogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
50.3 mol KCl (Potassium chloride)
<u>Step 2: Identify Conversions</u>
Avogadro's Number
<u>Step 3: Convert</u>
<u />
= 3.02907 × 10²⁵ formula units KCl
<u>Step 4: Check</u>
<em>We are given 3 sig figs. Follow sig fig rules and round.</em>
3.02907 × 10²⁵ formula units KCl ≈ 3.03 × 10²⁵ formula units KCl