Answer:
b i think because i think so
First, let's start off by finding the mass of this whole hydrate.
(Note: the unit of measurement for mass will be amu)
Let's find the molecular mass of each element.




Now, let's find the mass of each compound.


We have 6 molecules of H2O, so multiply 18.015 by 6 then add that with the weight of CoCl2.


Now divide 108.09 (mass of all the H2O in the hydrate) by 237.923 (total mass of hydrate).


Turn that into a percentage and you get 45.431%.
Hope this helps! :)
Ammonia compounds are bases in aqueous solution according to brønsted–lowry theory.
<h3>What are bases?</h3>
A base is a substance that can neutralize the acid by reacting with hydrogen ions.
Ammonia compounds are based on an aqueous solution according to brønsted–lowry theory because the water molecule donates a hydrogen ion to the ammonia, it is the Brønsted-Lowry acid, while the ammonia molecule which accepts the hydrogen ion is the Brønsted-Lowry base. Thus, ammonia acts as a base in both the Arrhenius sense and the Brønsted-Lowry sense.
Hence, ammonia compounds are based on an aqueous solution according to brønsted–lowry theory.
Learn more about the bases here:
brainly.com/question/16387395
#SPJ1
<span>The particles in a liquid are not stuck in fixed positions, which is why liquids flow to take the shape of a container into which they are placed. Hope this helps :D</span>
The balanced reaction that describes the reaction of chlorine gas and sodium iodide to produce elemental iodine and sodium chloride in aqueous solution is expressed Cl2+2NaI= I2 + 2NaCl. This kind of reaction is called single replacement reaction where the anion, in this case, is only replaced