The original options for this question were cleavage, luster and hardness. The answer would be cleavage.
Answer:
19.8 kg of C₂H₂ is needed
Explanation:
We solve this by a rule of three:
If 1251 kJ of heat are relased in the combustion of 1 mol of acetylene
95.5×10⁴ kJ of heat may be released by the combustion of
(95.5×10⁴ kJ . 1) /1251kJ = 763.4 moles of C₂H₂
Let's convert the moles to mass → 763.4 mol . 26 g/1 mol = 19848 g
If we convert the mass from g to kg → 19848 g . 1kg / 1000g = 19.8 kg
Because the rate at which water vapour condenses gets increase slowly to get equal to the rate of evaporation of the water.
Explanation:
When a bottle is partly filled with liquid water is leaves space for vapours to escape and get condensed equally.
When sealed and kept below the lamp the rate of condensation increases due to the empty space in the bottle for getting vapours cool down.
A point arrives when evaporation equates the condensation of the liquid in bottle becomes stable because vapours cannot pass the bottle eventually condense and become liquid.
Answer:
The answer is: Molecule and Organ system.
Answer:
Ratio is 3:2
3CO = 2Fe or 1.5 CO = 1 Fe
Explanation:
Fe2O3 + 3CO = 2Fe + 3CO2
Fe2O3 = Iron (|||) oxide
CO = Carbon monoxide
Fe = Solid Iron
CO2 = Carbon dioxide
Excellent is already balanced.
10 Moles Fe and 15 Moles of CO2
5 Moles Fe2O3 + 15 Moles 3CO = 10 Moles Fe + 15 Moles 3CO2
What is the ratio of carbon monoxide to solid iron
Ratio is 3:2 or 1.5 CO = 1 Fe