<em>The statement that gives the relationship between energy needed in breaking a bond and the one that is released after breakin</em>g is
The amount of energy it takes to break a bond is always less than the amount of energy released when the bond is formed.
- Bond energy can be regarded as amount of energy that is required in breaking a particular bond.
- For a bond to be broken Energy will be added and when a bond is broken there will be release of energy
- Bond breaking can be regarded as endothermic process, it is regarded as endothermic because there is a lot of energy required to be absorbed.
- Where ever a bond is broken, there must be formation of another bond
- Bond forming on the other hand can be regarded as exothermic process, since there is a release of releases energy.
Therefore, more energy is required in breaking of bond compare to energy released after breaking of bond.
Learn more at : brainly.com/question/10777799?referrer=searchResults
Answer:
Soil minerals form the basis of soil.
Explanation:
They are produced from rocks (parent material) through the processes of weathering and natural erosion. Water, wind, temperature change, gravity, chemical interaction, living organisms and pressure differences all help break down parent material.
Answer:
[K₂CrO₄] → 8.1×10⁻⁵ M
Explanation:
First of all, you may know that if you dilute, molarity must decrease.
In the first solution we need to calculate the mmoles:
M = mmol/mL
mL . M = mmol
0.0027 mmol/mL . 3mL = 0.0081 mmoles
These mmoles of potassium chromate are in 3 mL but, it stays in 100 mL too.
New molarity is:
0.0081 mmoles / 100mL = 8.1×10⁻⁵ M
Butane is C₄H₁₀.

The balanced equation is 2 C₄H₁₀ + 13 O₂ <span>→</span> 8 CO₂ + 10 H₂O.