I have all the answers here so take this
Answer:
If the force remains the same, the acceleration would decrease
Explanation:
According to Newton's second law, the acceleration of an object is given by

where
F is the force applied to the object
m is the mass of the object
As we see from the formula, the acceleration a is inversely proportional to the mass, m. Therefore, if the force F remains constant, this means that if the mass of the skateboarder increases, then the acceleration will decrease.
Answer:
2.24 m/s
Explanation:
resolving force of 29.2 N in x component
Fx = 29.2 cos 57.7
Fx = 15.6N
as force of friction is 12.7 N hence net force which produces acceleration is
15.6-12.7=2.9 N
by Newton 's law a=f/m
a= 2.9/6.87=0.422 m/s^2
now equation of motion is
v^2= U^2+2as
= 0^2+2(.422)(5.93)
v^2=5.00
v=2.24 m/s
Answer:
19.99 kg m²/s
Explanation:
Angular Momentum (L) is defined as the product of the moment of Inertia (I) and angular velocity (w)
L = m r × v.
r and v are perpendicular to each other,
where r = lsinθ.
l = 2.4 m
θ= 34°
g = 9.8 m/s² and m = 5 kg
resolving using newtons second law in the vertical and horizontal components.
T cos θ − m g = 0
T sin θ − mw² lsin θ = 0
where T is the force with which the wire acts on the bob
w = √g / lcosθ
= √ 9.8 / 2.4 ×cos 34
= 2.2193 rad/s
the angular momentum L = mr× v
= mw (lsin θ)²
= 5 × 2.2193 (2.4 ×sin 34°)²
=19.99 kg m²/s