Hello!
Ok so for this problem we use the ideal gas law of PV=nRT and I take it that the scientist needs to store 0.400 moles of gas and not miles.
So if we have
n=0.400mol
V=0.200L
T= 23degC= 273k+23c=296k
R=ideal gas constant= 0.0821 L*atm/mol*k
So now we rearrange equation for pressure(P)
P=nRT/V
P=((0.400mol)*(0.0821 L*atm/mol*k)*(296k))/(0.200L) = 48.6 atm of pressure
Hope this helps you understand the concept and how to solve yourself in the future!! Any questions, please feel free to ask!! Thank you kindly!!!
Answer:
The three-point test
Explanation:
The three-point test refers to a ground test utilizing an auxiliary current electrode and an auxiliary potential electrode.
Answer:
81°C.
Explanation:
To solve this problem, we can use the relation:
<em>Q = m.c.ΔT,</em>
where, Q is the amount of heat released from water (Q = - 1200 J).
m is the mass of the water (m = 20.0 g).
c is the specific heat capacity of water (c of water = 4.186 J/g.°C).
ΔT is the difference between the initial and final temperature (ΔT = final T - initial T = final T - 95.0°C).
∵ Q = m.c.ΔT
∴ (- 1200 J) = (20.0 g)(4.186 J/g.°C)(final T - 95.0°C ).
(- 1200 J) = 83.72 final T - 7953.
∴ final T = (- 1200 J + 7953)/83.72 = 80.67°C ≅ 81.0°C.
<em>So, the right choice is: 81°C.</em>
Sodium atom , potassium atom and cesium atom have the same group number which is group 1
The number 250 mg tablets of Metronidazole that are needed to make 150 ml of suspension containing 100 mg/ml
250mg= 150 ml
what about 100 ml = ? Mg
by cross multiplication
150 ml x 250 mg/100 ml = 60 Mg of 250 mg is needed