True would be the Correct answer
Answer:
300 Pascal
Explanation:
Given
weight or force (F) = 6000 N
area (A) = 20 m²
pressure (p) = ?
we know
the force acting normally per unit area is pressure. So
P = F / A
= 6000 / 20
= 300 Pascal
Hope it will help :)
The answer is C 8.87*10^4 m/s (it shouldn't be m/s^2 though as velocity is in m/s)
Since you know the acceleration is 12 m/s^2, the initial velocity is 2.39*10^4 m/s and the time (you have to convert to seconds) is 5400 seconds, then you can use the equation
v = vo + at
When you plug in the values you get
v = 2.39*10^4 + 5400*12 . so v = 8.87*10^4 m/s. C is your answer.
Answer: Current needed, mA 20 Voltage needed, V AC 6
Explanation: An electric gradient (or field) can exist that is analogous to the situation described above for step and touch potentials. The situation is more complex to analyze in the water because a person in the water assumes different postures and orientations in 3 dimensions (up, down, and sideways—north, south, east, and west). The transthoracic and translimb voltages will vary as the person moves in relation to the orientation (direction) of the electric field.