When compounds form, the atoms that bonded get a stable arrangement of electrons.
Compounds form because their atoms get a more stable arrangement than they had in the reactants.
A stable arrangement is a <em>complete octet</em> of eight electrons in the valence shell
.
The first order rate law has the form: -d[A]/dt = k[A] where, A refers to cyclopropane. We integrate this expression in order to arrive at an equation that expresses concentration as a function of time. After integration, the first order rate equation becomes:
ln [A] = -kt + ln [A]_o, where,
k is the rate constant
t is the time of the reaction
[A] is the concentration of the species at the given time
[A]_o is the initial concentration of the species
For this problem, we simply substitute the known values to the equation as in:
ln[A] = -(6.7 x 10⁻⁴ s⁻¹)(644 s) + ln (1.33 M)
We then determine that the final concentration of cyclopropane after 644 s is 0.86 M.
A solid, but they are constantly vibrating
Answer: The molar mass is the mass of a given chemical element or chemical compound (g) divided by the amount of substance (mol).
Explanation: The molar mass of a compound can be calculated by adding the standard atomic masses (in g/mol) of the constituent atoms.