He doesn't lose weight he stays the same weight it's just gravity that changes
Answer:
Explanation:
Let the vertical height by which it descends be h . Let it acquire velocity of v .
1/2 mv² = mgh
v² = 2gh
As it leaves the surface of sphere , reaction force of surface R = 0 , so
centripetal force = mg cosθ where θ is the angular displacement from the vertex .
mv² / r = mg cosθ
(m/r )x 2gh = mg cosθ
2h / r = cosθ
cosθ = (r-h) / r
2h / r = r-h / r
2h = r-h
3h = r
h = r / 3
Answer:
0.572
Explanation:
First examine the force of friction at the slipping point where Ff = µsFN = µsmg.
the mass of the car is unknown,
The only force on the car that is not completely in the vertical direction is friction, so let us consider the sums of forces in the tangential and centerward directions.
First the tangential direction
∑Ft =Fft =mat
And then in the centerward direction ∑Fc =Ffc =mac =mv²t/r
Going back to our constant acceleration equations we see that v²t = v²ti +2at∆x = 2at πr/2
So going backwards and plugging in Ffc =m2atπr/ 2r =πmat
Ff = √(F2ft +F2fc)= matp √(1+π²)
µs = Ff /mg = at /g √(1+π²)=
1.70m/s/2 9.80 m/s² x√(1+π²)= 0.572