The work done will be equal to the potential energy of the piano at the final position
P.E=m.g.h
.consider the plank the hypotenuse of the right triangle formed with the ground
.let x be the angle with the ground=31.6°
.h be the side opposite to the angle x (h is the final height of the piano)
.let L be the length of the plank
sinx=opposite side / hypotenuse
= h/L
then h=L.sinx=3.49×sin31.6°=0.638m
weight w=m.g
m=w/g=3858/10=385.8kg
Consider Gravity g=10m/s2
then P.E.=m.g.h=385.8kg×10×0.638=2461.404J
then Work W=P.E.=2451.404J
D do.
All 3 resistors are connected directly across the battery.
Answer
Given,
Time to hear the clap = 14.4 s
speed of the light = 3 x 10⁸ m/s
Speed of sound = 343 m/s
a) distance where lightning strike
D = s x t
D = 14.4 x 343
D = 4939.2 m
b) No, we do not need to know the value of speed of light. Because we need to calculate the distance where we hear the sound. To calculate that we need to know the speed of sound.
Answer:
l these errors believe that the speed of the system is less than that calculated
Explanation:
When we carry out any measurement in addition to the magnitude, the sources of uncertainty must also be analyzed.
We can have random uncertainties, correspondin
g to momentary errors, for example early warps during medicine, parallax errors, errors in the starting and ending points of the movement; I mean every possible random error. This error is the one that is analyzed and calculated in the statistical equations
There is another source of error, the systematic ones, these are much more complicated, they can be an error in the pendulum length, friction in the pendulum movement mechanism, deformities in the support systems, this errors are not analyzed by the statistic, in general They discover by looking at the results and comparing with the tabulated or real ones.
tith the explanation we see that the errors described are systematic.
In general these errors believe that the speed of the system is less than that calculated