A. The sound will decrease in volume
Answer:
Force exerted, F = 1.5 N
Explanation:
It is given that, a boxer punches a sheet of paper in midair and brings it from rest up to a speed of 30 m/s in 0.060 s.
i.e. u = 0
v = 30 m/s
Time taken, t = 0.06 s
Mass of the paper, m = 0.003 kg
We need to find the force the boxer exert on it. The force can be calculated using second law of motion as :



F = 1.5 N
So, the force the boxer exert on the paper is 1.5 N. Hence, this is the required solution.
M = mass of aluminium = 1.11 kg
= specific heat of aluminium = 900
= initial temperature of aluminium = 78.3 c
m = mass of water = 0.210 kg
= specific heat of water = 4186
= initial temperature of water = 15 c
T = final equilibrium temperature = ?
using conservation of heat
Heat lost by aluminium = heat gained by water
M
(
- T) = m
(T -
)
(1.11) (900) (78.3 - T) = (0.210) (4186) (T - 15)
T = 48.7 c
Answer:
a. 5 × 10¹⁹ protons b. 2.05 × 10⁷ °C
Explanation:
Here is the complete question
A beam of protons is moving toward a target in a particle accelerator. This beam constitutes a current whose value is 0.42 A. (a) How many protons strike the target in 19 seconds? (b) Each proton has a kinetic energy of 6.0 x 10-12 J. Suppose the target is a 17-gram block of metal whose specific heat capacity is 860 J/(kg Co), and all the kinetic energy of the protons goes into heating it up. What is the change in temperature of the block at the end of 19 s?
Solution
a.
i = Q/t = ne/t
n = it/e where i = current = 0.42 A, n = number of protons, e = proton charge = 1.602 × 10⁻¹⁹ C and t = time = 19 s
So n = 0.42 A × 19 s/1.602 × 10⁻¹⁹ C
= 4.98 × 10¹⁹ protons
≅ 5 × 10¹⁹ protons
b
The total kinetic energy of the protons = heat change of target
total kinetic energy of the protons = n × kinetic energy per proton
= 5 × 10¹⁹ protons × 6.0 × 10⁻¹² J per proton
= 30 × 10⁷ J
heat change of target = Q = mcΔT ⇒ ΔT = Q/mc where m = mass of block = 17 g = 0.017 kg and c = specific heat capacity = 860 J/(kg °C)
ΔT = Q/mc = 30 × 10⁷ J/0.017 kg × 860 J/(kg °C)
= 30 × 10⁷/14.62
= 2.05 × 10⁷ °C