1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Airida [17]
3 years ago
5

1. What are valence electrons used for by an element?

Physics
1 answer:
jarptica [38.1K]3 years ago
4 0

Answer:

An element's valence electron tells us about its ability to react and not react. More rules to this, but that's the gist of it. it also helps us form bonds

Explanation:

You might be interested in
The weightlifter's internal store of energy decreased when he lifted the bar.
Mumz [18]

Answer:

The energy returns to the weightlifter's muscles, where it is dissipated as heat.

Explanation:

The energy returns to the weightlifter's muscles, where it is dissipated as heat. As long as the weightlifter controls the weight's descent, their muscles are acting as an overdamped shock absorber, as if the weight were sitting on a piston containing very thick fluid, slowly compressing it downward (and slightly heating up the fluid in the process). Since muscles are complicated biological systems and not simple pistons, they require metabolic energy to maintain tension throughout the controlled descent, so the weightlifter feels like they're putting energy into the weight, even though the weight's gravitational potential energy is being converted into heat within the lifter's muscles.

5 0
3 years ago
The amount of heat energy required to raise the temperature of a unit mass of a material one degree is
charle [14.2K]
The amount of heat energy required to raise the temperature of a unit mass of a material to one degree is called D. its heat capacity.

The relationship of the heat when applied to the object and the change in temperature of the object when heat is being applied is directly proportional to each other. This means that when heat is applied to the object, the temperature of the object increases and when heat is not applied to the object, the temperature of the object decreases.
5 0
3 years ago
A bowling ball moving with a velocity of 5V to the right collides elastically with a beach ball moving at a velocity 2V to the l
katen-ka-za [31]

Answer:

v'_2=3V

Explanation:

From the question we are told that:

Bowling ball Speed v_1=5 m/s

Beach ball Speed v_2=2 m/s

Let The Mass be equal i.e

 M_1=M_2

Therefore

Generally the equation for Velocity of beach ball after collision v'_2 is mathematically given by

Since Velocity is Vector Quantity

Therefore

 v'_2=v_1-v_2

 v'_2=5-2

 v'_2=3V

3 0
3 years ago
A bullet of mass 0.1 kg traveling horizontally at a speed of 100 m/s embeds itself in a block of mass 3 kg that is sitting at re
Xelga [282]

Answer:

(a) the speed of the block after the bullet embeds itself in the block is 3.226 m/s

(b) the kinetic energy of the bullet plus the block before the collision is 500J

(c) the kinetic energy of the bullet plus the block after the collision is 16.13J

Explanation:

Given;

mass of bullet, m₁ = 0.1 kg

initial speed of bullet, u₁ = 100 m/s

mass of block, m₂ = 3 kg

initial speed of block, u₂ = 0

Part (A)

Applying the principle of conservation linear momentum, for inelastic collision;

m₁u₁ + m₂u₂ = v(m₁ + m₂)

where;

v is the speed of the block after the bullet embeds itself in the block

(0.1 x 100) + (3 x 0) = v (0.1 + 3)

10 = 3.1v

v = 10/3.1

v = 3.226 m/s

Part (B)

Initial Kinetic energy

Ki = ¹/₂m₁u₁² + ¹/₂m₂u₂²

Ki =  ¹/₂(0.1 x 100²) +  ¹/₂(3 x 0²)

Ki = 500 + 0

Ki = 500 J

Part (C)

Final kinetic energy

Kf = ¹/₂m₁v² + ¹/₂m₂v²

Kf = ¹/₂v²(m₁ + m₂)

Kf = ¹/₂ x 3.226²(0.1 + 3)

Kf = ¹/₂ x 3.226²(3.1)

Kf = 16.13 J

6 0
3 years ago
The work done by an external force to move a -6.70 μc charge from point a to point b is 1.20×10−3 j .
ASHA 777 [7]

Answer:

108.7 V

Explanation:

Two forces are acting on the particle:

- The external force, whose work is W=1.20 \cdot 10^{-3}J

- The force of the electric field, whose work is equal to the change in electric potential energy of the charge: W_e=q\Delta V

where

q is the charge

\Delta V is the potential difference

The variation of kinetic energy of the charge is equal to the sum of the work done by the two forces:

K_f - K_i = W + W_e = W+q\Delta V

and since the charge starts from rest, K_i = 0, so the formula becomes

K_f = W+q\Delta V

In this problem, we have

W=1.20 \cdot 10^{-3}J is the work done by the external force

q=-6.70 \mu C=-6.7\cdot 10^{-6}C is the charge

K_f = 4.72\cdot 10^{-4}J is the final kinetic energy

Solving the formula for \Delta V, we find

\Delta V=\frac{K_f-W}{q}=\frac{4.72\cdot 10^{-4}J-1.2\cdot 10^{-3} J}{-6.7\cdot 10^{-6}C}=108.7 V

4 0
3 years ago
Read 2 more answers
Other questions:
  • An aluminum pie plate of radius 0.12 m is spins and accelerates at a constant rate from 13 rad/s to 29 rad/s in 5.4 s. What was
    10·1 answer
  • Before leaving an incident assignment, you should do all of the following EXCEPT FOR:
    9·1 answer
  • a car accelerates from rest at 3 m / s^2 along a straight road. how far has the car travelled after 4 s
    7·1 answer
  • A police car drives 100 miles in 75 minutes. What is its average speed in miles per hour?
    12·1 answer
  • Gamma rays and X–rays are similar because they both have
    5·1 answer
  • Interactive Solution 6.39 presents a model for solving this problem. A slingshot fires a pebble from the top of a building at a
    11·1 answer
  • Which of the following items has the least inertia while at rest?
    12·2 answers
  • What is the diffference between distance and displacement
    14·1 answer
  • A rectangular solid is 5m long, 2m high and 4m wide. The mass of the solid is 300g. Find the density of this solid.​
    15·1 answer
  • In which situation would alley cropping be most useful for sustainable farming?(1 point)
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!