1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
melisa1 [442]
3 years ago
11

Ill give 15 points to the one who helps me with this

Physics
1 answer:
alexandr402 [8]3 years ago
6 0
Machenical number one
You might be interested in
A parallel combination of a 1.13-μF capacitor and a 2.85-μF one is connected in series to a 4.25-μF capacitor. This three-capaci
Nata [24]

Answer:

(a) Charge of 4.25 μF capacitor is 35.46 μC.

(b) Charge of 1.13 μF capacitor is 10.05 μC.

(c) Charge of 2.85 μF capacitor is 25.36 μC.

Explanation:

Let C₁ , C₂ and C₃ are the capacitor which are connected to the battery having voltage V. According to the problem, C₁ and C₂ are connected in parallel. There equivalent capacitance is:

C₄ = C₁ + C₂

Substitute 1.13 μF for C₁ and 2.85 μF for C₂ in the above equation.

C₄ = ( 1.13 + 2.85 ) μF = 3.98 μF

Since, C₄ and C₃ are connected in series, there equivalent capacitance is:

C₅ = \frac{C_{3}C_{4}  }{C_{3} + C_{4}  }

Substitute 4.25 μF for C₃ and 3.98 μF for C₄ in the above equation.

C₅ = \frac{4.25\times3.98 }{4.25 + 3.98  }

C₅ = 2.05 μF

The charge on the equivalent capacitance is determine by the relation :

Q = C₅ V

Substitute 2.05 μF for C₅ and 17.3 volts for V in the above equation.

Q = 2.05 μF x 17.3  = 35.46 μC

Since, the capacitors C₃ and C₄ are connected in series, so the charge on these capacitors are equal to the charge on the equivalent capacitor C₅.

Charge on the capacitor, C₃ = 35.46 μC

Charge on the capacitor, C₄ = 35.46 μC

Voltage on the capacitor C₄ = \frac{Q}{C_{4} } = \frac{35.46\times10^{-6} }{3.98\times10^{-6}} = 8.90 volts

Since, C₁ and C₂ are connected in parallel, the voltage drop on both the capacitors are same, that is equal to 8.90 volts.

Charge on the capacitor, C₁ = C₁ V = 1.13 μF x 8.90 = 10.05 μC

Charge on the capacitor, C₂ = C₂ V = 2.85 μF x 8.90 = 25.36 μC

5 0
3 years ago
Why do herbivores of the Serengeti migrate year after year
galina1969 [7]

Answer:

The main reason is that very young calves are more noticeable to predators when mixed with older calves from the previous year

Explanation:

5 0
2 years ago
Read 2 more answers
What force is acting on the rainwater in the model?
Vikki [24]
The force is gravitational because when something is falling is call gravitational
8 0
3 years ago
Read 2 more answers
A man is standing on a weighing machine on a ship which is bobbing up and down with simple harmonic motion of period T=15.0s.Ass
STALIN [3.7K]

Well, first of all, one who is sufficiently educated to deal with solving
this exercise is also sufficiently well informed to know that a weighing
machine, or "scale", should not be calibrated in units of "kg" ... a unit
of mass, not force.  We know that the man's mass doesn't change,
and the spectre of a readout in kg that is oscillating is totally bogus.

If the mass of the man standing on the weighing machine is 60kg, then
on level, dry land on Earth, or on the deck of a ship in calm seas on Earth,
the weighing machine will display his weight as  588 newtons  or as 
132.3 pounds.  That's also the reading as the deck of the ship executes
simple harmonic motion, at the points where the vertical acceleration is zero.

If the deck of the ship is bobbing vertically in simple harmonic motion with
amplitude of M and period of 15 sec, then its vertical position is 

                                     y(t) = y₀ + M sin(2π t/15) .

The vertical speed of the deck is     y'(t) = M (2π/15) cos(2π t/15)

and its vertical acceleration is          y''(t) = - (2πM/15) (2π/15) sin(2π t/15)

                                                                = - (4 π² M / 15²)  sin(2π t/15)

                                                                = - 0.1755 M sin(2π t/15) .

There's the important number ... the  0.1755 M.
That's the peak acceleration.
From here, the problem is a piece-o-cake.

The net vertical force on the intrepid sailor ... the guy standing on the
bathroom scale out on the deck of the ship that's "bobbing" on the
high seas ... is (the force of gravity) + (the force causing him to 'bob'
harmonically with peak acceleration of  0.1755 x amplitude).

At the instant of peak acceleration, the weighing machine thinks that
the load upon it is a mass of  65kg, when in reality it's only  60kg.
The weight of 60kg = 588 newtons.
The weight of 65kg = 637 newtons.
The scale has to push on him with an extra (637 - 588) = 49 newtons
in order to accelerate him faster than gravity.

Now I'm going to wave my hands in the air a bit:

Apparent weight = (apparent mass) x (real acceleration of gravity)

(Apparent mass) = (65/60) = 1.08333 x real mass.

Apparent 'gravity' = 1.08333 x real acceleration of gravity.

The increase ... the 0.08333 ... is the 'extra' acceleration that's due to
the bobbing of the deck.

                        0.08333 G  =  0.1755 M

The 'M' is what we need to find.

Divide each side by  0.1755 :          M = (0.08333 / 0.1755) G

'G' = 9.0 m/s²
                                       M = (0.08333 / 0.1755) (9.8) =  4.65 meters .

That result fills me with an overwhelming sense of no-confidence.
But I'm in my office, supposedly working, so I must leave it to others
to analyze my work and point out its many flaws.
In any case, my conscience is clear ... I do feel that I've put in a good
5-points-worth of work on this problem, even if the answer is wrong .

8 0
2 years ago
Both the moon and the sun influence the tides on Earth. The moon has a much greater influence though. Why is that
3241004551 [841]
Because even though the moon is smaller, therefore a weaker gravitational pull, the moon is much closer to the earth than the sun, thus having a greater gravitational pull
3 0
2 years ago
Other questions:
  • If a wheel falls from an airplane that is flying horizontally at an altitude of 500 m, how long will it take for the wheel to st
    14·1 answer
  • An object is released from rest at time t = 0 and falls through the air, which exerts a resistive force such that the accelerati
    15·1 answer
  • Give an example of when your average speed would be higher than instantaneous speed
    12·1 answer
  • You can use one of your 5 senses to make _____ during an inquiry activity.
    14·2 answers
  • How to change the amount of charge to increase the current​
    15·1 answer
  • Which element would have properties most similar to those of fluorine (F) ?
    11·2 answers
  • A soccer ball is released from rest at the top of a grassy incline. After 4.1 seconds, the ball travels 43 meters and 1.0 s afte
    6·1 answer
  • I REALLY NEED HELP PLEASE!!! CAN SOMEONE ANSWER THIS? At 0 ºC, some amount of energy is required to change 1 kg of water from a
    10·2 answers
  • What is electricity?
    14·2 answers
  • If the activity of a radionuclide decreases from 5,000 disintegrations per minute to 625 disintegrations per minute
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!