Vf = vi + at
0m/s = 40m/s + a(0.025s)
a = -1600m/s^2
Fnet = ma
Fnet = (0.10kg)(-1600m/s^2)
Fnet = -160 N
hope that helps
Answer:
The magnitude of the net electric field is:

Explanation:
The electric field due to q1 is a vertical positive vector toward q1 (we will call it E1).
On the other hand, the electric field due to q2 is a horizontal positive vector toward q2(We will call it E2).
Knowing this, the <u>magnitude of the net electric</u> field will be the<u> E1 + E2. </u>
Let's find first E1 and E2.
The electric field equation is given by:

Where:
- k is the Coulomb constant (k = 9*10^{9} Nm²/C²)
- q1 is the first charge
- d1 is the distance from q1 to P


And E2 will be:



Finally, we need to use the Pythagoras theorem to find the magnitude of the net electric field.



I hope it helps you!
Everything we see or do in everyday life that involves electricity in any way is the result of electrons moving from one place to another, or from one object to another. <em> (last choice)</em>
Answer:
c) The wavelength decreases but the frequency remains the same.
Explanation:
Light travels at different speed in different mediums.
Refractive index is equal to velocity of the light 'c' in empty space divided by the velocity 'v' in the substance.
Or ,
n = c/v.
<u>The frequency of the light does not change but the wavelength of the light changes with change in the speed.</u>
c = frequency × Wavelength
Frequency is constant,
The formula can be written as:
n = λ / λn.
Where,
λn is the wavelength in the medium
λ is the wavelength in vacuum
<u>When the light travels to glass, it speed slows down and also the wavelength decreases as both are directly proportional. There will be no effect on frequency.</u>