Given that,
Mass of the stone, m = 400 g = 0.4 kg
Initial speed, u = 20 m/s
It is climbed to a height of 12 m.
To find,
The work done by the resistance force.
Solution,
Let v is the final speed. It can be calculated by using the conservation of energy.

Work done is equal to the change in kinetic energy. It can be given as follows :

So, the required work done is 32.99 J.
Answer:
Answer is It was deduced from the rate at which it glimmers.
Refer below.
Explanation:
The X-ray source Cygnus X-1 has a mass of at least 11 solar masses and a diameter of only about one-quarter the diameter of the Earth. With such a small diameter it must be a compact object, and with such a large mass it can't be a white dwarf or a neutron star, so a black hole is the only possibility remaining. The diameter of Cygnus X-1 found:
It was deduced from the rate at which it glimmers.
Answer:
The average acceleration of the ball during the collision with the wall is 
Explanation:
<u>Known Data</u>
We will asume initial speed has a negative direction,
, final speed has a positive direction,
,
and mass
.
<u>Initial momentum</u>

<u>final momentum</u>

<u>Impulse</u>

<u>Average Force</u>

<u>Average acceleration</u>
, so
.
Therefore, 
Answer:
See below
Explanation:
Photosynthesis is the process in which green plants use sunlight to make their own food. Photosynthesis requires sunlight, chlorophyll, water, and carbon dioxide gas. It is the process in which the chlorophyll in the leaves of the plant use the sunlight and water to convert the carbon dioxide gas into energy for the plant to use.
Answer: 2.94×10^8 J
Explanation:
Using the relation
T^2 = (4π^2/GMe) r^3
Where v= velocity
r = radius
T = period
Me = mass of earth= 6×10^24
G = gravitational constant= 6.67×10^-11
4π^2/GMe = 4π^2 / [(6.67x10^-11 x6.0x10^24)]
= 0.9865 x 10^-13
Therefore,
T^2 = (0.9865 × 10^-13) × r^3
r^3 = 1/(0.9865 × 10^-13) ×T^2
r^3 = (1.014 x 10^13) × T^2
To find r1 and r2
T1 = 120min = 120*60 = 7200s
T2 = 180min = 180*60= 10800s
Therefore,
r1 = [(1.014 x 10^13)7200^2]^(1/3) = 8.07 x 10^6 m
r2 = [(1.014 x 10^13)10800^2]^(1/3) = 10.57 x 10^6 m
Required Mechanical energy
= - GMem/2 [1/r2 - 1/r1]
= (6.67 x 10^-11 x 6.0 x 10^24 * 50)/2 * [(1/8.07 × 10^-6 )- (1/10.57 × 10^-6)]
= (2001 x 10^7)/2 * (0.1239 - 0.0945)
= (1000.5 × 10^7) × 0.0294
= 29.4147 × 10^7 J
= 2.94 x 10^8 J.