(i) We start by calculating the mass of sugar in the solution:
mass of sugar = concentration × solution mass
mass of sugar = 2.5/100 × 500 = 12.5 g
Then now we can calculate the amount of water:
solution mass = mass of sugar + mass of water
mass of water = solution mass - mass of sugar
mass of water = 500 - 12.5 = 487.5 g
(ii) We use the following reasoning:
If 500 g solution contains 12.5 g sugar
Then X g solution contains 75 g sugar
X=(500×75)/12.5 = 3000 g solution
Now to get the amount of solution in liters we use density (we assume that is equal to 1):
Density = mass / volume
Volume = mass / density
Volume = 3000 / 1 = 3000 liters of sugar solution
<span>0.0750 M Na3PO4 as this solution would contain 3 Na+ and 1 PO4- ions per mole of Na3PO4 for an effective total ion concentration of 4 x .0750 or .300 M. The K2SO4 has three total ions or a concentration of .300 M as well. Hope it helps. </span>
Answer:
it is the primary electricity in solid. they also make up an atom.
Explanation:
i hope this helps. please make brainiest
You have 3 (h2(so4)) on the reactants side so you need to have 6 total hydrogen’s on the products side. Therefore 3(h2) is required.
<u>Answer:</u>
Pyrite leaves behind a green-black streak when it is rubbed against an unglazed porcelain plate as a part of the streak test process.
<u>Explanation:</u>
Different minerals produce different coloured streaks when rubbed against a white ceramic or porcelain streak plate. This streak test is done to identify the mineral and distinguish the same from other minerals that look similar in colour and texture.
It must be ensured that the test is done on clean and fresh specimens of the mineral and that there must be no contaminants. Pyrite specimens are usually brass-yellow colour but it leaves a green-black streak when the streak test is done.