Answer:
isolated system (plural isolated systems) (physics) A system that does not interact with its surroundings. Depending on context this may mean that its total energy and/or momentum stay constant.
Explanation:
An isolated system is a thermodynamic system that cannot exchange either energy or matter outside the boundaries of the system. ... The system may be enclosed such that neither energy nor mass may enter or exit.
is there both?
Answer:
Determine the frequency of light with a wavelength of 2.775⋅10−7 cm. Answer in units of Hz?❤
Explanation:
The <u>First Law of Thermodynamics</u> states that energy cannot be created or destroyed in an isolated system. In other words, energy can be converted from one form into another, but it cannot be created nor destroyed.
<u>Conduction</u> is the transfer of energy from one molecule to another by direct contact. This transfer occurs when molecules hit against each other, which can take place in solids, liquids, and gases.
When you put your cold hands under your legs to warm your hands up, the heat energy from your legs is being transferred to your hands through conduction. However, since energy cannot be created, there is no extra heat energy that can instantaneously replace the heat created by your legs.
Answer:
0.11 mol
Explanation:
<em>This is the chemical formula for acetic acid (the chemical that gives the sharp taste to vinegar): CH₃CO₂H. An analytical chemist has determined by measurements that there are 0.054 moles of oxygen in a sample of acetic acid. How many moles of hydrogen are in the sample?</em>
Step 1: Given data
- Formula of acetic acid: CH₃CO₂H
- Moles of oxygen in the sample of acetic acid: 0.054 moles
Step 2: Establish the appropriate molar ratio
According to the chemical formula of acetic acid, the molar ratio of H to O is 4:2.
Step 3: Calculate the moles of atoms of hydrogen
We will use the theoretical molar ratio for acetic acid.
0.054 mol O × (4 mol H/2 mol O) = 0.11 mol H