Answer:
2.73414 seconds
467622.66798 J
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
g = Acceleration due to gravity = 9.81 m/s² = a



or

The time taken is 2.73414 seconds
The potential energy is given by

The change in potential energy is 467622.66798 J
Answer:
75 rotations
Explanation:
f0 = 0, f = 3000 rpm = 50 rps, t = 3 s
(a) use first equation of motion for rotational motion
w = w0 + α t
2 x 3.14 x 50 = 0 + α x 3
α = 104.67 rad/s^2
(b) Let θ be the angular displacement
use second equation of motion for rotational motion
θ = w0 t + 1/2 α t^2
θ = 0 + 0.5 x 104.67 x 3 x 3
θ = 471.015 rad
The angle turn in one rotation is 2 π radian.
Number of rotation = 471.015 / (2 x 3.14) = 75 rotations
1- You should always have a question for your experiment.
2- You need to conduct background research. It helps to write down your sources so you can cite your references.
3- Propose a hypothesis (educated guess on what you believe the outcome of the experiment will be)
4- Design and perform an experiment to test your hypothesis (include independent and dependent variable)
5- Record observations and analyze what the data means.
6- Conclude whether you need to accept or reject your hypothesis, which accepting means your hypothesis was right and rejected is if it was wrong.
The answer is B, The speed is constant and the velocity is changing.
Answer:
10.93m/s with the assumption that the water in the lake is still (the water has a speed of zero)
Explanation:
The velocity of the fish relative to the water when it hits the water surface is equal to the resultant velocity between the fish and the water when it hits it.
The fish drops on the water surface vertically with a vertical velocity v. Nothing was said about the velocity of the water, hence we can safely assume that the velocity if the water in the lake is zero, meaning that it is still. Therefore the relative velocity becomes equal to the velocity v with which the fish strikes the water surface.
We use the first equation of motion for a free-falling body to obtain v as follows;
v = u + gt....................(1)
where g is acceleration due to gravity taken as 9.8m/s/s
It should also be noted that the horizontal and vertical components of the motion are independent of each other, hence we take u = 0 as the fish falls vertically.
To obtain t, we use the second equation of motion as stated;

Given; h = 6.10m.
since u = 0 for the vertical motion; equation (2) can be written as follows;

substituting;

Putting this value of t in equation (1) we obtain the following;
v = 0 + 9.8*1.12
v = 10.93m/s