That's a <em>parallel</em> circuit. <em>(B)</em>
When current from Point-A reaches the 3-way intersection just to the right of Point-B, it has to make a choice: Either turn left, go through B, and light the lower bulb, or go straight and light the upper bulb.
A circuit that has any "decision" points in it is a parallel circuit. What happens in the real world is: The current splits up. Some of the current that reaches the intersection turns left toward Point-B, and the rest of it goes straight up.
A series circuit is one in which there's only one possible path all the way around. There are no intersections of more than 2 roads, and no electron ever has to decide which way to flow.
An open circuit is one in which there's a break somewhere along the line and electrons can't jump across it. It's like a railroad where a big piece is cut out of the track somewhere. So no trains can travel on that route, and there's no current flowing anywhere in the circuit.
I'm not so sure about a "combination" circuit. I guess you could give that name to a complicated circuit that has some series parts and some parallel-parts. Personally, I'd call that a "series-parallel" circuit. But it really doesn't matter right now. Whatever the word means, the circuit in the picture is definitely not a "combination" circuit.
in the same direction as the displacement vector and the motion
given that
mass of water = 2 L = 2000 gram
now we can use
heat required to raise the temperature

C = 1 cal/g C

now from above formula


so above is the heat required to raise the temperature
Answer:
This is because the force of gravity is much less on the moon than on the earth, therefore the person wont be pulled down much and will jump higher
Mechanical Energy transforms into Thermal due to the moving parts rubbing on eachother creating heat and friction.