Answer:
The quantitative relationship between heat transfer and temperature change contains all three factors: Q = mcΔT, where Q is the symbol for heat transfer, m is the mass of the substance, and ΔT is the change in temperature. The symbol c stands for specific heat and depends on the material and phase. The specific heat is the amount of heat necessary to change the temperature of 1.00 kg of mass by 1.00ºC. The specific heat c is a property of the substance; its SI unit is J/(kg ⋅ K) or J/(kg ⋅ ºC). Recall that the temperature change (ΔT) is the same in units of kelvin and degrees Celsius. If heat transfer is measured in kilocalories, then the unit of specific heat is kcal/(kg ⋅ ºC).
Explanation:
You do 1000 divide it by 10 which equals 100 W
<h2>
The child swing through the swing's equilibrium position 6 times during the course of 3 periods.</h2>
Explanation:
One period means time taken to complete one revolution.
In case of swings in one period time it travels the same position through two times.
Here we need to find how many times does the child swing through the swing's equilibrium position during the course of 3 period(s) of motion.
For 1 period = 2 times
For 3 periods = 3 x For 1 period
For 3 periods = 3 x 2 times
For 3 periods = 6 times
The child swing through the swing's equilibrium position 6 times during the course of 3 periods.
One scientist proposes an idea and other scientists repeat his or her experiments so they can Accept the Idea.
Answer:
Magnitude of the force on proton = F = 1.1085 × 10^-15 N
Explanation:
Charge on proton = q = 1.60 × 10^-19 C
Velocity of proton = V = 4.0 × 10^4 m/s
Magnetic field = B = 0.20 T
Angle between V and B = θ = 60
We know that,
F = qVBsin θ = (1.60 × 10^-19)( 4.0 × 10^4)( 0.20)sin(60)
F = 1.1085 × 10^-15 N