Answer:
force between both the balloons is
Explanation:
It is given charge on both balloons are same and equal to 
Separation between both the balloons 
According to Coulomb's law force between two charges is given by

Therefore force is equal to


So force between both the balloons is
Answer:
The distance covered by the body is, S = 800 m
Explanation:
Given data,
The initial velocity of the body, u = 30 m/s
The acceleration of the body, a = 10 m/s²
Let the time period of travel be, t = 10 s
Using the II equations of motion,
S = ut + ½ at²
Substituting the given values,
S = 30 x 10 + ½ x 10 x 10²
S = 800 m
Hence, the distance covered by the body is, S = 800 m
Stars form inside relatively dense concenstrations of interstellar gas and dust known as molecular clouds.
hope it helps
Answer:
The pressure on the ground is about 9779.5 Pascal.
The pressure can be reduced by distributing the weight over a larger area using, for example, a thin plate with an area larger than the circular area of the barrel's bottom side. See more details further below.
Explanation:
Start with the formula for pressure
(pressure P) = (Force F) / (Area A)
In order to determine the pressure the barrel exerts on the floor area, we need the calculate the its weight first

where m is the mass of the barrel and g the gravitational acceleration. We can estimate this mass using the volume of a cylinder with radius 30 cm and height 1m, the density of the water, and the assumption that the container mass is negligible:

The density of water is 997 kg/m^3, so the mass of the barrel is:

and so the weight is

and so the pressure is

This answers the first part of the question.
The second part of the question asks for ways to reduce the above pressure without changing the amount of water. Since the pressure is directly proportional to the weight (determined by the water) and indirectly proportional to the area, changing the area offers itself here. Specifically, we could insert a thin plate (of negligible additional weight) to spread the weight of the barrel over a larger area. Alternatively, the barrel could be reshaped (if this is allowed) into one with a larger diameter (and smaller height), which would achieve a reduction of the pressure.
Answer:
B. 0.16 m
Explanation:
The vertical distance by which the player will miss the target is equal to the vertical distance covered by the dart during its motion.
Since the dart is thrown horizontally, the initial vertical velocity is zero:

While the horizontal velocity is

The horizontal distance covered is

Since the dart moves by uniform motion along the horizontal direction, the time it takes for covering this distance is

along the vertical direction, the motion is a uniformly accelerated motion with constant downward acceleration g=9.8 m/s^2, so the vertical distance covered is given by
