Explanation:
Pressure = force / area
P = (68 kg × 9.8 m/s²) / (2 × (0.04 m)²)
P = 208,250 Pa
Converting to psi:
P = 208,250 N/m² × (0.225 lbf/N) × (0.0254 m/in)²
P = 30.2 psi
Answer:
Work, W = F * d, and
Work = change in kinetic energy, so W=deltaKE.
Hence,
deltaKE=F * d
(1/2)*m*v^2 =F * d
d=[(1/2)*m*v^2]/F
d=[(1/2)*0.6*20^2]/5
d=24 m.
Explanation:
Work = change in kinetic energy, so W=deltaKE.
Answer:
100 Joules
Explanation:
Applying,
W = mgh................... Equation 1
Where W = workdone to hold the box above the ground, mg = weight of the box, h = height of the box.
From the question,
Given: mg = 10 newtons, h = 10 meters.
Substitute these values into equation 1
W = 10×10
W = 100 Joules.
Hence the amount of workdone is 100 Joules
To solve this problem we will start by considering how to calculate the apparent weight. On the sphere this will then be given that the real weight is the sum of the apparent weight and the Buoyant Force. Therefore we will have to

Here
= True Weight
= Apparent Weight
= Buoyant Force
If we seek to find the apparent weight we will have to,


Remember that
V = Volume (Volume Sphere)
= Density (At this case water density)
g = Gravitational acceleration


Therefore the apparent weight will be 0.1526N
Answer:
* energy is proportional to masses. in a graph it would look like a line
* kinetic energy varies with the square of the velocity, In a graph it gives rise to a quadratic curve
Explanation:
Kinetic energy is defined by
K = ½ m v²
when analyzing this expression we can see:
* energy is proportional to masses. Therefore, doubling the mass doubles the kinetic energy and if the mass rises 4 times the energy rises 4 times, that is, they are directly proportional, in a graph it would look like a line
* kinetic energy varies with the square of the velocity. Therefore by doubling the speed the energy goes up 4 times. In a graph it gives rise to a quadratic curve